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Preface

This book represents a joint effort by a research engineer and a mathematician. The
initial idea for it arose from our many years of experience in the automotive
industry, advanced research development, and of course from our common
research interest in applied mathematics, physics, and engineering. The main
reason for this cooperation is the fact that mathematicians generally approach
problems using mathematical rigor, but which need not always be practically
applicable; at the same time, engineers usually deal with problems involving
applied mathematics, which must ultimately work in the “real world” of industry.
Having recognized that what mathematicians consider rigor can be more like rigor
mortis for engineers and physicists, this joint effort proposes a compromise
between the mathematical rigors and less rigorous applied mathematics, incor-
porating different points of view.

Our main aim is to bridge the mathematical gap between where physics and
engineering mathematics end and where tensor analysis begins, which we do with
the help of a powerful and user-friendly tool often employed in computational
methods for physical and engineering problems in any general curvilinear coor-
dinate system. However, tensor analysis has certain strict rules and conventions
that must unconditionally be adhered to. This book is intended to support research
scientists and practicing engineers in various fields who use tensor analysis and
differential geometry in the context of applied physics, electrical and mechanical
engineering. Moreover, it can also be used as a textbook for graduate students in
applied physics and engineering.

Tensor analysis and differential geometry were pioneered by great mathema-
ticians in the late nineteenth century, chiefly Curbastro, Levi-Civita, Christoffel,
Ricci, Gauss, Riemann, Weyl, and Minkowski, and later promoted by well-known
theoretical physicists in the early twentieth century, mainly FEinstein, Dirac,
Heisenberg, and Fermi, working on relativity and quantum mechanics. Since then,
tensor analysis and differential geometry have taken on an increasingly important
role in the mathematical language used in the modern physics of quantum
mechanics and general relativity, and in many applied sciences fields. They have
also been applied to computational mechanical and electrical engineering in
classical mechanics, aero and vibroacoustics, computational fluid dynamics
(CFD), continuum mechanics, electrodynamics, and cybernetics.
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viii Preface

Approaching the topics of tensors and differential geometry in a mathematically
rigorous way would not only require an immense amount of effort, it would not be
practical for working engineers and applied physicists. As such, we decided to
present these topics in a comprehensive and approachable way that will show
readers how to work with tensors and differential geometry and to apply them to
modeling the physical and engineering world. This book also includes numerous
examples with solutions and concrete calculations in order to guide readers
through these complex topics step-by-step. For the sake of simplicity and keeping
the target audience in mind, we deliberately neglect certain aspects of mathe-
matical rigor in this book, discussing them informally instead. Therefore, those
readers who are more mathematically interested should consult the recommended
literature.

We would like to thank Mmes Hestermann-Beyerle and Kollmar-Thoni at
Springer Heidelberg for their helpful suggestions and valued cooperation during
the preparation of this book.

Hung Nguyen-Schifer
Jan-Philip Schmidt
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Chapter 1
General Basis and Bra—Ket Notation

We begin this chapter by reviewing some mathematical backgrounds dealing with
coordinate transformations and general basis vectors in general curvilinear coor-
dinates. Some of these aspects will be informally discussed for the sake of sim-
plicity. Therefore, those readers interested in more in-depth coverage should
consult the literature recommended under Further Reading. To simplify notation,
we will denote a basis vector simply as basis in the following section.

We assume that the reader has already had fundamental backgrounds about
vector analysis in finite N-dimensional spaces with the general bases of curvilinear
coordinates. However, this topic is briefly recapitulated in Appendix E.

1.1 Introduction to General Basis and Tensor Types

A physical state generally depending on N different variables is defined as a point
P(ul,..., u ) that has N-independent coordinates of u. At changing the variables,
such as time, locations, and physical characteristics, the physical state P moves from
one position to other positions. All relating positions generate a set of points in an
N-dimension space. This is the point space with N dimensions (N-point space).
Additionally, the state change between two points could be described by a vector
r connecting them that obviously consists of N-vector components. All state changes
are displayed by the vector field that belongs to the vector space with N dimensions
(N-vector space). Generally, a differentiable hypersurface in an N-dimensional space
with general curvilinear coordinates {ui } fori =1, 2,..., N is defined as a differ-
entiable (N — 1)-dimensional subspace with a codimension of one. Subspaces with
any codimension are called manifolds of an N-dimensional space (cf. Appendix E).

Physically, the vector length does not change in any coordinate system.
However, its components depend on the coordinate system. That means the vector
components vary as the coordinate system changes. Generally, tensors are a very
useful tool applied to the coordinate transformations between two general curvi-
linear coordinate systems in finite N-dimensional real spaces. The exemplary
second-order tensor can be defined as a multilinear functional T that maps an
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2 1 General Basis and Bra—Ket Notation

Table 1.1 Different types of tensors

Tensors of O-order 1l-order 2-order 3-order  Higher-order
T T; T, Tt_'/k Ti/l --Pq
Scalar a € R X
Vector v € RV X
Matrix M € RY x RY X
Bra (B| and Ket |A) € RV, RY x RV X X
Levi-Civita symbols X X)
Eijk € RY x RY x RV
Higher-order tensors X

Tj.pg ERY x - xRV

arbitrary vector in a vector space into the image vector in another vector space.
Like vectors, tensors do not change in any coordinate system and the tensor
components only depend on the relating transformed coordinate systems. There-
fore, the tensor components change as the coordinate system varies.

Scalars, vectors, and matrices are special types of tensors:

scalar (invariant) is a zero-order tensor,

vector is a first-order tensor,

matrix is arranged by a second-order tensor,

bra and ket are first- and second-order tensors,

Levi-Civita permutation symbols in a three-dimensional space are third-order
pseudo-tensors (Table 1.1).

We consider two important spaces in tensor analysis: first, Euclidean N-spaces
with orthogonal and curvilinear coordinate systems; second, general curvilinear
Riemannian manifolds of dimension N (cf. Appendix E).

1.2 General Basis in Curvilinear Coordinates

We consider three covariant basis vectors g;, g, and g3 to the general curvilinear
coordinates (ul, uz, and u3) at the point P in Euclidean space E>. The non-orthonormal
basis g; can be calculated from the orthonormal bases (e;, e,, and e3) in Cartesian
coordinates x’' = )ci(ui) using Einstein summation convention (cf. Sect. 2.1).

o G~O0r &/ or o

BT 0w T 4ad o T o u

o
:ejé for j=1,2,3

(1.1)

The metric coefficients can be calculated by the scalar products of the covariant
and _contravariant bases_in_general curvilinear coordinates with non-orthonormal
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bases (i.e., non-orthogonal and non-unitary). There are the covariant, contravari-
ant, and mixed metric coefficients g;;, g”, and g/, respectively.

gijzgjizgi'gjzgj'gﬁéé{
gl=¢ =g g/ =g g #0 (1.2)
gl=g g =g g=0

where the Kronecker delta, 5{:, is defined as

5/ = 0 fori#j
T fori=j.

Similarly, the bases of the orthonormal coordinates can be written in the non-
orthonormal bases of the curvilinear coordinates u' = u'(x/).

or  S~or o or ou

“ow  2eow a0 ow o w3
ou' .
:gi@ for i=1,2,3

The covariant and contravariant bases of the orthonormal coordinates (orthogonal
and unitary bases) have the following properties:

_ — 5.
ei-ej—ej-e,-—éi,
i)l .l S
e.e/=e e =0/; (1.4)

i a —a . pl — S/
e e =e-e =97

The contravariant basis g* of the curvilinear coordinate u* is perpendicular to the
covariant bases g; and g; at the given point P, as shown in Fig. 1.1. The contra-
variant basis g* can be defined as

k_ or Or

0g =g X=X (1.5)

where

o 1s a scalar factor;

g“ s the contravariant basis of the curvilinear coordinate of u".

Multiplying Eq. (1.5) by the covariant basis g, the scalar factor o results in

(g < g)g =ag g =adf =0

= (g8 8] (16)
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Fig. 1.1 Covariant and g; u3
contravariant bases of
curvilinear coordinates

The expression in the square brackets is called the scalar triple product.
Therefore, the contravariant bases of the curvilinear coordinates result from
Egs. (1.5 and 1.6).

P g X & i & X K 8iXE

g=rr—o; g=rF—"5 =
[gi7 gju gk] [gia gja gk] [giu gj’ gk]

(1.7)
Obviously, the relation of the covariant and contravariant bases results from
Eq. (1.7).

. X 0.).0.
gk . gi — (gz g]) gl — 55 (18)
[gi ) gj ) gk]
where 6F is the Kronecker delta.
The scalar triple product is an invariant under cyclic permutation; therefore, it

has the following properties:
(8 xg) & =(8x8)g=I(gx8) & (1.9)

Furthermore, the scalar triple product of the covariant bases of the curvilinear
coordinates can be calculated (Nayak 2012).

ol ol ol
o ou' Ou? oud
o' oot a2 o o

[g17 2, g3] = &jjk dulowzoud

M1l
~

dul ou? oud
ou! ou? oud

(1.10)

where J is the Jacobian, determinant of the covariant basis tensor; ¢ is the Levi-
Civita symbols in Eq. (A.5), cf. Appendix A.
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Squaring the scalar triple product in Eq. (1.10), one obtains

ou! Oou? oud

811 812 813
[g17g2,g3]2= gﬁl Z_xz g_xi =181 &2 &23 (1.11)
613 613 a;l3 831 832 833 .
= las| =g= 7

where g; = g; - g; are the covariant metric coefficients.
Thus, the scalar triple product of the covariant bases results in

[81,8,8] = (8 X &) &

The covariant and contravariant bases of the orthogonal cylindrical and spherical
coordinates will be studied in the following subsections.

(1.12)

1.2.1 Orthogonal Cylindrical Coordinates

Cylindrical coordinates (r, 0, and z) are orthogonal curvilinear coordinates in
which the bases are mutually perpendicular but not unitary. Figure 1.2 shows a
point P in the cylindrical coordinates (r, 0, z), which is embedded in the ortho-
normal Cartesian coordinates (xl, X%, and x3). However, the cylindrical coordinates
change as the point P varies.

The vector OP can be written in Cartesian coordinates (xl, x2, x3):

R = (rcosf)e; + (rsinf)e; +ze; (1.13)
= xlel + x2e2 —l—x3e3 .

where
e}, e, and e; are the orthonormal bases of Cartesian coordinates;
0 is the polar angle.

To simplify the formulation with Einstein symbol, the coordinates of u', u?, and
u® are used for r, 0, and z, respectively. Therefore, the coordinates of P(ul, u?, u3)
can be expressed in Cartesian coordinates:
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Fig. 1.2 Covariant bases

oz u',u?ud):
of orthogonal cylindrical ( )= )

u'sr;u?=0;ud=z

coordinates
X3
g3
s Rt LR \
7 z N
\l IS %/7 g2
e.| R
_____ Sz N / _ g1
//// 0 \32 \\\\ X2
e Cd
1 9 r/

X1
x! =rcos = u' cos u?
P(u',u?,u) = { x* =rsin0 = u' sin (1.14)
©=z=u

The covariant bases of the curvilinear coordinates can be computed from

_OR_OR o/ ox/

R _R N Y o =103 1.15
& 0w o ow Uow N IThS (L.15)

The covariant basis matrix G can be calculated from Eq. (1.15).

G=[g & gl

ox!  ox!'  ox!
ou' P o’ cos) —rsin0 0
2 2 2 1.16
= % % % = | sinf rcosf O ( )
u u U 0 0 ]

o’ ol
ou! our oud
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The determinant of the covariant basis matrix G is called the Jacobian J.

ox' ox! ax!
a”; a”; aui cos —rsin0 0
G| =J= (LA ) sinf rcosf® O|=r (1.17)
ou! Ou? Oud 0 0 1
oxd axd o
ou' Ou? Ou?
The inversion of the matrix G yields the contravariant basis matrix G~'. The
relation between the covariant and contravariant bases results from Eq. (1.8).

g g= 5; (Kronecker delta) (1.18a)
At det (G) # 0 given from Eq. (1.17), Eq. (1.18a) is equivalent to
G 'G=1I (1.18b)

Thus, the contravariant basis matrix G~! can be calculated from the inversion of
the covariant basis matrix G, as given in Eq. (1.16).

ou! ou' ou!
gl ox! ox? Ol rcos@ rsinf 0
G'=|g|= 8_”2 6_”2 6_u2 =—| —sinf cosf O (1.19a)
o ox! oxz oxd r 0 0 -

ox! ox2 O3

The contravariant bases of the curvilinear coordinates can be written as
i

:Eej for j=1,2,3 (1.19b)
X

gi

The calculation of the determinant and inversion matrix of G will be discussed in
the following section.
According to Eq. (1.16), the covariant bases can be rewritten as

g = (cosO)e; + (sinf)e; +0- e3=|g| =1
g, = (—rsin0)e; + (rcos0)e; +0- e = |g,| = r (1.20)
g=0-e +0-ex+1-e3= g =1
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Fig. 1.3 Covariant bases 12,3
of orthogonal spherical (P ’¢’6) —)(U usu )
coordinates ul=p;u?=¢;us=0
x3
psing
g4
g3
P
¥
A 7\
- 3 ~
e —g ep \\\ X2
/ g
0 >2 2
€4
0
P COS ¢
X

The contravariant bases result from Eq. (1.19b).
g' = (cosO)e; + (sin0)e; +0- e3 = |g'| =1
sin 6 cos 6 1
g2:<_—r )el—i—( p, >e2+0‘e3:>|g2|:; (1.21)

g=0e+0-e+1 e=|g'|=1

Not only the covariant bases but also the contravariant bases of the cylindrical
coordinates are orthogonal due to

g-g =g g=0
g g=0 for i # j;
g-g =0 fori#j.

1.2.2 Orthogonal Spherical Coordinates

Spherical coordinates (p, ¢, and 0) are orthogonal curvilinear coordinates in
Wthh the bases are mutually perpendlcular but not unitary. Figure 1.3 shows a
e e 0, and z) which is embedded in the
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orthonormal Cartesian coordinates (xl, x2, and x3). However, the spherical coor-
dinates change as the point P varies.

The vector OP can be rewritten in Cartesian coordinates (x', x%, and x°):

R = (psin¢cosh)e; + (psin¢sinBh)e, + pcos ¢ e;

(1.22)
= xlel + x262 + x3e3
where
e;, e, and e; are the orthonormal bases of Cartesian coordinates;
¢ is the equatorial angle;
0 is the polar angle.

To simplify the formulation with Einstein symbol, the coordinates of ul, uz, and
u® are used for 0, ¢, and 0, respectively. Therefore, the coordinates of P(ul, u2, u3)
can be expressed in Cartesian coordinates:

x!' = psin¢cos0 = u' sinu® cos u®

P(u',u*,u®) = { x> = psin ¢ sin 0 = u' sinu® cos u® (1.23)
X = pcos ¢ = u' cosu?
The covariant bases of the curvilinear coordinates can be computed by means of

. R _OR &V
! aul ) a.xj aul (1'24>

J
:ej% for j=1,2,3

Thus, the covariant basis matrix G can be calculated from Eq. (1.24).

ox' ax! !

' ul ud

ox? ox? o’

'l P

G (1.25)
ou! ou? oud

sin¢pcos pcos¢pcos —psingsind

G=lg g g&l|=

= | sin¢sinf pcos¢sinf  psin¢pcosbd
cos ¢ —psin ¢ 0
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sin¢pcosf pcospcos —psin¢sinb
|G|=J =|sin¢sind pcos¢psind psindcosh
cos ¢ —psin ¢ 0
= p?sin¢

(1.26)

The determinant of the covariant basis matrix G is called the Jacobian J.
Similarly, the contravariant basis matrix G~ ! is the inversion of the covariant
basis matrix.

ou! ou' ou!
g1 [0 3% &
T ) B RV
5 oxl ox2 ol
g o’ o oud
W o2 od (1.27a)
psin¢gcos psingsinfd pcosd
_ 1| cos¢cosO cos¢sind —sing
T p _(sin@) (cos@) 0
sin ¢ sin ¢
The contravariant bases of the curvilinear coordinates can be written as
g":@ej for j=1,2,3 (1.27b)

The matrix product G~' - G must be an identity matrix according to Eq. (1.18b).

psingcosf psingsinh pcos ¢
1] cos¢pcos cospsind —sing

o sin 6 cos 0 0
‘(ﬁn¢> <an¢>

sin¢pcos@ pcospcosd —psingsind 100
singsinf  pcos¢psinl psingcosd | =10 1 0| =1
cos ¢ —psin ¢ 0 0 0 1
(1.28)

According to Eq. (1.25), the covariant bases can be written as

g, = (singcosf)e; + (singsinfd) e, + cospe; = |g| =1
g, = (pcospcosB)e + (pcospsinf)e; — (psingles = |g,|=p  (1.29)
g, = (—psinpsinb)e; + (psinpcosh) e, +0-e;3 = |g;| = psing
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The contravariant bases result from Eq. (1.27b).

g' = (singcosb)e; + (sindsinb) e, +cospe; = [g'| =1
1 1 1 1
g’ <cos¢cos 9) e + (cosd)sin@) e — <sind>> e; = |g2‘ ==
p P p P

3 1 sin0 1cos0 3 1
g e+ ;Sl— e2+0-e3:>|g' =—

~psing ng
(1.30)

Not only the covariant bases but also the contravariant bases of the spherical
coordinates are orthogonal due to

g-g =g g=9
g-g=0 for i#j
g g/ =0 for i#j.

1.3 Eigenvalue Problem of a Linear Coupled Oscillator

In the following subsection, we will give an example of the application of vector and
matrix analysis to the eigenvalue problems in mechanical vibration. Figure 1.4 shows
the free vibrations without damping of a three-mass system with the masses my, m;,
and m; connected by the springs with the constant stiffness &, k», and k5. In the case
of the small vibration amplitudes and constant spring stiffnesses, the vibrations can
be considered linear. Otherwise, the vibrations are nonlinear for that the bifurcation
theory must be used to compute the responses (Nguyen-Schifer 2012).

Using Newton’s second law, the homogenous vibration equations (free vibra-
tion equations) of the three-mass system can be written as (Nguyen-Schifer 2012;
Kraemer 1993; Muszynska 2005; Vance 1988; Yamamoto and Ishida 2001):

miX; + kix; —|—k2(x1 —xz) =0
m2562—|—k2(x2—x1)+k3(x2—x3):0 (131)
msX; + k3()€3 — XQ) =0

Thus,

mix, + (k1 + kz)xl —koxy; =0
mzjéz — kle + (kz + k3))€2 — k3X3 =0

m3X3 — kzxy + k3x3 =0
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k, =k +k,
ky, =k, +k,

\ - / = 7
k,x, ky(x, —x,) ky(x, —x3)
ky(x, —x,) ky(x; = x,)

Fig. 1.4 Free vibrations of a three-mass system

Using the abbreviations of kj, = k; + k, and k3 = k, + k3, one obtains

mixy + kipx; —koxp =0
moXy — koxy + kp3xp — kzx3 =0
m3xs — k3xo + k3xz =0

The vibration equations can be rewritten in the matrix formulation:

ny 0 0 551 k12 —k2 0 X1 0
0 ny 0 . 5&2 + —k2 k23 —k3 . X2 == 0 ( 1 32)
0 0 ms 3&3 0 —k3 k3 X3 0
Thus,
X+ M 'K)x=0
(MK) (1.33)
SX+Ax=0
where
ko ko
n ny
A=MK= |- R Rk K&
my My my
k k
0 B B

ms3 ms
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The free vibration response of Eq. (1.33) can be assumed as

x = Xe/
= x = A(Xe") = ix (1.34)

= % = )*(XeM) = x
where 4 is the complex eigenvalue that is defined by
A=atjo € C (1.35)

in which o is the eigenfrequency; « is the growth/decay rate (Nguyen-Schéifer
2012).
Substituting Eq. (1.34) into Eq. (1.33), one obtains the eigenvalue problem

(A+22DXe" =0 (1.36)

where X is the eigenvector relating to its eigenvalue /; I is the identity matrix.
For any non-trivial solution of x, the determinant of (A + ZZI) must vanish.

det (A + A1) =0 (1.37)

Equation (1.37) is called the characteristic equation of the eigenvalue. Obviously,
this characteristic equation is a polynomial of 2*¥ where N is the degrees of
freedom (DOF) of the vibration system. In this case, the DOF equals 3 for a three-
mass system in the translational vibration.

Solving the characteristic Eq. (1.37), one obtains 6 eigenvalues (= 2*DOF) for
the vibration equations of the three-mass system. In the case without damping, the
eigenvalues result in

/11 = :|:j(U1; /12 = ﬂ:ja)z; ;u3 = ijw3 (138)

Substituting the eigenvalue 4; into Eq. (1.36), one obtains the corresponding
eigenvector X;.

(A+2DX; =0 for i=1,2,3 (1.39)

The eigenvectors in Eq. (1.39) relating to the eigenvalues show the vibration
modes of the system.

It is well known that N ordinary differential equations (ODESs) of second order
can be transformed into 2N ODEs of first order using the simple trick of adding
N identical ODEs of first order to the original ODEs.
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(ifljin=0> - <zZiM—1KX>
* ()= Lo ol (2)

Substituting a new (2N x 1) vector of

z= <§> = 7= (i) (1.41)

into Eq. (1.40), the vibration equations of first order can be rewritten down

(i) = [_MO—IK (I)] : (i) ©1i=Bz (1.42)

The free vibration response of Eq. (1.42) can be assumed as

(1.40)

z="27¢" =i =)(Le") = Jz (1.43)
where / is the complex eigenvalue given in
A=atjoeC (1.44)

within o is the eigenfrequency; « is the growth/decay rate.
Substituting Eq. (1.43) into Eq. (1.42), one obtains the eigenvalue problem

(B—/DZe" =0 (1.45)

where Z is the eigenvector relating to its eigenvalue 4; I is the identity matrix.
For any non-trivial solution of z, the determinant of (B — AI) must vanish:

det(B — AT) =0 (1.46)

Equation (1.46) is called the characteristic equation of the eigenvalue that is
identical to Eq. (1.37). Obviously, this characteristic equation is a polynomial of
2N , where N is the degrees of freedom (DOF) of the vibration system. In this case,
the DOF equals 3 because of the three-mass system.

Solving the characteristic Eq. (1.46), one obtains 6 eigenvalues (= 2¥*DOF) for
the vibration equations of the three-mass system. In the case without damping, the
eigenvalues result in

M = tjoy; A= tjwr; Az = tjws (1.47)
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Fig. 1.5 Notation of bra and |
ket <3ra <:<3ra¢Ke>:>‘ Ke>
|

Substituting the eigenvalue A; into Eq. (1.45), it gives the corresponding eigen-
vector Z;.

B—2DZ;=0 for i=123 (1.48)

The eigenvectors in Eq. (1.48) relating to the eigenvalues describe the vibration
modes of the system.

1.4 Notation of Bra and Ket

The notation of bra and ket was defined by Dirac for applications in quantum
mechanics and statistical thermodynamics (Dirac 1958). Bra and ket are tuples of
independent coordinates in a finite N-dimensional space in Riemannian manifold
(cf. Appendix E). The name of bra and ket comes from the angle bracket ( ), as
shown in Fig. 1.5. Dividing the bracket into two parts, one obtains the left one
called bra and the right one named ket.

In general, bra and ket can be considered as vectors, matrices, and high-order
tensors. In contrast to vectors (first-order tensors), bra and ket have generally
neither direction nor vector length in the point space. They are only a tuple of
N coordinates (dimensions), such as of time, position, momentum, velocity, etc.
Bra and ket are independent of any coordinate system, but their components
depend on the relating basis of the coordinate system; that is, they are changed at
the new basis by coordinate transformations. Therefore, the bra and ket notation is
a powerful tool mostly used in quantum mechanics and statistical thermodynamics
in order to describe a physical state as a point of N dimensions in a finite
N-dimensional complex space.

Some examples of bra and ket can be written in different types:

1+
-1 . .
Ket vector [K) = Y Bravector (K| =[(1—-i) -1 (2+41i) 1}
—i
L 1
, 1+i -2 _ 1—i 1
Ket matrix [M) = .| — Bra matrix (M| = -
! 2 —1i -2 241
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1.5 Properties of Kets

We denote the finite N-dimensional complex vector space by C". A ket |K) can be
defined as an N-tuple of the coordinates ul,. . u: K(ul,..., u™ ) e CN. Given three
arbitrary kets |A), |B), and |C) € CV and two scalars o, B e C, the following
properties of kets result in Shankar (1980):

e Commutative property of ket addition:
A) +[B) = [B) + |A)
¢ Distributive property of ket multiplication by a scalar addition:
(o0 + B)IA) = a|A) + BIA)

e Distributive property of multiplication of ket addition by a scalar:

o(|A) + [B)) = ofA) + o[B)
e Associative property of ket addition:

|A) + (/B) +1C)) = (|A) + [B)) +[C)

e Associative property of ket multiplication by scalars:

a(BlA)) = B(a|A)) = aB|A)
e Property of ket addition to the null ket |0):

|A) +10) = |A)
e Property of ket multiplication by the null scalar:
0-1A) =10)

e Property of ket addition to an inverse ket |—A):

|A) +[-A) = |A) — |A) =0).
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1.6 Analysis of Bra and Ket
1.6.1 Bra and Ket Bases

Ket vector|A) of the coordinates (u',..., u): A(ay,..., ay) € V" is the sum of its
components in the orthonormal ket bases and can be written as

ap

Ay = | “ Za,| = (o +jp) € (1.49)
an i=1

where

a; is the ket component in the basis i;

a; is a complex number, a; € C;

i) is the orthonormal basis of the coordinates (u',..., u")

The ket bases of {|1), |2), ...,|N)} in the coordinates (u',..., u") are column
vectors, as given in

1 0 0 0
1 0 0

=" = m=|]s m=|Y] as0
0 0 0 1

The bra (Al is defined as the transpose conjugate (also adjoint) |A)* of the ket |A).
Therefore, the bra is a row vector, and its elements are the conjugates of the ket
elements.

To formulate the bra of |A), at first the ket |A) must be transposed; then, its
complex elements are conjugated into the bra elements.

u +jp
A) = u + B,
i (1.51)
= |AT) = [(u +jp)) (2+jBs) ... (aw+iBy)]
= |A)'=[( —jB1) (2—jBs) ... (aw—iBy)] =(A]

The ket vector |A)” is called the transpose conjugate (adjoint) of the ket |A) and
equals the bra (A].
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Thus, the bra (A| can be written in the bra bases

N
(Al= A=) (|- a;a = (4—jp) €C (1.52)

j=1
Analogously, the bra bases result from Eq. (1.50).

1j=[1 0 - 0]; (2/]=[0 1 - 0];

Gl=[0 0 1 0]; (NJ=[0 0 0 1] (1.53)

Due to orthonormality, the product of bra and ket is a scalar and obviously equals
the Kronecker delta.

i-l=aly=o={ 1% (154

The combined symbol (ij) of the bra (i| and ket |j) in Eq. (1.54) is defined as the
inner product (scalar product) of two kets |i) and [j).

1.6.2 Gram-Schmidt Scheme of Basis Orthonormalization

The basis {|g;)} is non-orthonormal in the curvilinear coordinates in the space R>.

Using the Gram—Schmidt scheme (Shankar 1980; Griffiths 2005), the orthonormal

bases (|e;), |e2), |e3)) are created from the non-orthogonal bases (|g,), &), |g3))-

The orthonormalization procedure of the basis is discussed in Appendix E.2.6.
The first orthonormal ket basis is generated by

ey = 1) = &

The second orthonormal ket basis results from

iy )~ e ga) e
le2) =[2) = llg,) — (e1] &) - |e1)]

The third orthonormal ket basis is similarly calculated in

_ lgs) — (e[ g5)-ler) —{ea|gs) - |er)
|lgs) — (e1 | &) - ler) — (e2 [ g5) - [e2)]

les) = 3)
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Generally, the orthonormal ket basis ]ej> can be rewritten in the N-dimensional
space.

_ |gj> - Zj;ll (e; } gj> “le;)

— o . for j=1,2,...,N (1.55)
“gj> > (e ‘ g) - |e,>‘

lej) = i)

Using the Gram-Schmidt procedure, the ket orthonormal bases of {|1), |2),
.., {IN)} in the coordinates (u',..., u") are generated from any non-orthonormal
bases, as given in Eq. (1.50). The bra orthonormal bases of {{1l, (2I,..., (NI} in the
coordinates (ul,. N ) are the adjoint of the ket orthonormal bases.

1.6.3 Cauchy-Schwarz and Triangle Inequalities

The Cauchy—Schwarz and triangle inequalities immediately apply to the Bra and
Ket notation:

1. Cauchy-Schwarz Inequality

The well-known Cauchy—Schwarz inequality provides the relation between the
inner product of two kets and the ket norms.

(A|B)<[|A)| - [[B)]; [A), [B)eV" (1.56)

2. Triangle Inequality

The triangle inequality formulates the inequality between the sum of two kets
and the ket norms.

1)+ [B)| <[IA)| +[[B)]; [A), [B) € V™. (1.57)

1.6.4 Computing Ket and Bra Components

The component of a ket results from multiplying the ket by a bra basis according to
Egs. (1.49 and 1.54):

(1.58)

ol LElUMN Zyl_i.lbl
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Equation (1.58) indicates that the ket component in the orthogonal bases equals the
scalar product between the ket and its relating basis.

Similarly, the bra component can be computed by multiplying the bra by a ket
basis.

N v (1.59)

Il
—_

It is straightforward that the bra component is equal to the conjugate of the relating
ket component g;, as given in Eq. (1.52).

1.6.5 Inner Product of Two Kets

The inner product of two kets |A) and |B) is defined by

=YD bl =) Y aibe] (1.60a)

It is obvious that the inner product of two kets is a complex number according to
Egs. (1.59 and 1.60a).
In the case of |A) = |B), the inner product in Eq. (1.60a) becomes

(A|A) = (Z <i|a§‘) . Zajm)

(1.60b)
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Thus, the norm (length) of the ket |A) is given in
1A)] = V(A TA) (1.60¢)

The inner product in Eq. (1.60a) can be rewritten using Eq. (1.52).

b

(A|B) Zab ay @ a; ay] b2
i—1 S (1.61)

by

=|A)"[B) = (A - [B) = (A | B)

Similarly, the inner product of two kets|B) and |A) can be calculated as follows:

(B|A) = (/ |b*> (Zaiﬁ)

W IILES 9

l:1]:1 i=

N
= Z b:‘ai

MZ\/

bra;d, (1.62)

-
Il
-

N (1.63)

Thus, the inner product is skew-symmetric (antisymmetric) contrary to the inner
product of two regular vectors.
Some properties of the inner product (scalar product) are valid:
Skew symmetry: (A|B) = (BJA)";
Positive definiteness: (AJA) = ||A)* >0;
Distributive property: (A|(aB + BC)) = o(A|B) + B(A|C) for a, B € C.
Furthermore, the linear adjoint operator has the following properties:

L. (apy)* = [aBy]* = (By)*o* = y*B*a* for o, B, y € C
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Note that the product order is changed in the adjoint operation of the scalar
product.

(o|]A)) = |0A) = |A) o = (A|o* for o« € C

((Alo)'= o (A]"= o*|A) for a € C

(Al = (Ao for o € C

(BJA)"= |A)"-(B|"= (A| - |B) = (A|B): skew-symmetric (antisymmetric)
(Alo*[B)" = [B)"-a(A|]"= (B| - o-|A) = (B|o|A) for o € C

(JA)(B|)"= (B|"-|]A)*= |B)(A|: the outer product of ket and bra.

NNk

1.6.6 Outer Product of Bra and Ket

The outer product of the ket |A) and the bra (Bl is defined as
(1.64)

where the product term [i)(j| is called the outer product of the bases |i) and (j|.
Contrary to the inner product resulting a scalar of (1 x 1) matrix € V, the outer
product is an operator of (N x N) matrix € VYN because the ket is an (N x 1)
column vector € VV and the bra is a (1 x N) row vector € V.
Now, the ket |A) can be expressed in ket bases:

N
A ="l (165)
i=1
According to Eq. (1.58), the ket component is
a;i = (i| A)
Substituting a; into Eq. (1.65), one obtains the ket

A) = l)ilA) =) LlA) (1.66)

i=1 i=1
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where I; is the projection operator (outer product) according to (Shankar 1980), as
defined by

00 1 0]= (1.67)

S = O O
S o OO
(=N eNele)
SO = O O
S o OO

The element I; of the projection operator (matrix) is 1 at the ith row and jth
column, as shown in Eq. (1.67); otherwise, other elements are equal to zero.
Obviously, the sum of all projection operators is the identity matrix.

SE=> "l (1.68)

i=1 i=1

I

According to Eq. (1.66), the identity property of the ket is proved by

A) = > L|A) =TA). (1.69)

i=1

1.6.7 Ket and Bra Projection Components on the Bases

The projection component of the ket |A) on the basis [i) can be calculated as

= [0 (- [A) =) (i A) (1.70)

) =314 =" la, (171)

Similarly, the projection component of the bra (A| on the basis (i| computes as

(Al = (Al
= (Al [i) (il = (A |) G (1.72)

= (ila;
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Fig. 1.6 Linear T
transformation 7'
of a ket |A)

The bra can be expressed in its projection components, as given in Eq. (1.52).

N N

:Z(A

(1.73)

() -

i=1

1.6.8 Linear Transformation of Kets

We consider the complex vector spaces V and V'. Each of them belongs to the
finite N-dimensional complex space C". The linear transformation 7 maps the ket
|A) in V into the image ket |[A") in V', as shown in Fig. 1.6.

The image ket |A”) can be written in the bases [i) (Shankar 1980; Griffiths 2005) as

T:|A) — |A’> = T|A>

A") = Z =3 Tlia

i= i=1

(1.74)

In this case, the ket basis |i) is also mapped into the image ket basis |i'). The
transformation operator 7 for the basis can be written as

T: |iy— i) = |i') =T|i) (1.75)
The image ket basis |i’) is formulated as a linear combination of the old ket bases

(), j=12,...N).

=Tli) = ZTJ,U i=1,2,..,N (1.76)
j=1

where the operator element Tj; is in the jth row and ith column of the transfor-
mation matrix T of the transformation operator 7.
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Multiplying both sides of Eq. (1.76) by the bra basis (k|, one obtains

N
(k| i) = (k|Tli) ZTﬂIJ
=1
N N (1.77)
=D _Tilk )= Tidi = T
j=1 j=1
Thus, the operator element results from Eq. (1.77):

= (k| i) = (k|Tli) (1.78)

Substituting Eq. (1.76) into Eq. (1.74), one obtains the image ket.

N

A =TIA) = T fi)a,

=

Z = Z ZTﬁlj>> aj (1.79)
&

(Z Tﬂa,> i)=Y dli)

i=1 j=1

The component of the image ket in the basis |j) is given from Eqgs. (1.78 and 1.79).

; it = z CiTli) a (1.80)

& |A") = Tyun|A)

The image ket in Eq. (1.80) can be rewritten in the formulation matrix Ty, y-

a) Ty T - Ty Tiy a
A Ty Tn - Ty Ton as
= . .. N A (1.81)
a/’. Ty - - Ti Tn a;
ay Tyi Tna - Ty Taww ay

where the matrix element Tj; is computed by the ket transformation T, as given in
Eq. (1.78).

= (I,
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Fig. 1.7 Coordinate
transformation of bases

1.6.9 Coordinate Transformations

The ket basis |e;) is transformed into the new ket basis |g;) by the transformation §~',
as shown in Fig. 1.7. The transformed ket basis can be written as (Griffiths 2005).

ST e — lg) = &) = S7"e)

&S |gl> - |ei> = |e,-> = S|gl> (182)

Analogous to the ket transformation, the old ket basis can be written in a linear
combination of the new bases:

N
le) => |g)Si for i=12,..N (1.83)
j=1

in which §j; is the matrix element of the transformation matrix S.
Multiplying both sides of Eq. (1.83) by the bra basis (g, | one obtains the matrix
element Sy;.

N N
(g le) = (&l - > lg)Si=> (& | g)Si
i= =

v (1.84)
= Z 0Sji = Sk
=1
Thus, using Eq. (1.82) it gives
Sk = (g | &) = (2IS]g:) (1.85)

An arbitrary ket |A) can be expressed linearly in terms of the old ket basis:

A) = Z le;) af (1.86)

where df is the ket component in the old basis |e;).
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Substituting Eq. (1.83) into Eq. (1.86), one obtains

N N

S lerer =3 (S wosi ) o
i

k=1

(zsk, Y=o

i=1 k=1

(1.87)

Therefore, the ket component in the transformed basis |g;) can be calculated by
Eq. (1.87).

N N
= Sudf Z (8lSIgi) af < |A)*=S|A)° (1.88)
i=1

i=1

The transformed ket in Eq. (1.88) can be rewritten in the matrix formulation:

a]* S Sz - Su Sw a ¢
a S S» - Sx Saw a
= . . .. . . . (1.89)
ax Saa - Sk Sw a;
ay St Sv2 - Sni Sww ay
where the matrix element is given in Eq. (1.89):
Sii = (g | &) = (glS]g:) (1.90)

The components of the transformed ket af in the new basis |g;) are derived from
Eq. (1.89).

In the following section, a combined transformation of kets consisting of three
transformations is carried out (Griffiths 2005; Longair 2013), as shown in Fig. 1.8:

1. Basis transformation ™' from |A)* in the basis |g;) to |A)° in the basis |e;);
2. Ket transformation T from |A)‘ to |A)¢ in the basis |e;);
3. Basis transformation S from |A’)* in the basis |e;) to |A’)® in the basis |g;).

The first transformation yields the first transformed ket:
|AY'=S"'|A)® (1.91)
The second transformation yields the second transformed ket:

IA))=T|A) (1.92)
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Fig. 1.8 The combined transformation of kets

The third transformation leads to the third transformed ket:
|A'>g= S|A'>e (1.93)

Finally, the combined transformed ket of three transformations results from
Eqgs. (1.91, 1.92, and 1.93).

|A")e= S|A")*= ST|A)°= (STS™')|A)= U|A)® (1.94)
where the combined transformation U is defined as (STS™1).

The component of the product of many operators is computed (Shankar 1980;
Griffiths 2005) according to Eq. (1.78).

i (1.95)
N N
=D > Sulusy'
The ket transformed component of |A’)® can be obtained from Egs. (1.94 and 1.95).
A)* = UIA)

N N N N
= a;g = Z Uija}g = Z (ZZSikalSl;l> a}g
i=1

j=1 \k=11=1

(1.96)
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The transformed ket in Eq. (1.96) can be rewritten in the formulation matrix Ty, »

/ 8 8
a Un Up - Uy Uw a

d) Uy Upxp - Uy Upny a

A I o O R (1.97)
a; U,‘] . . U,j Ui aj
ay Uvi Unxa - Uni Uy ay

1.6.10 Hermitian Transformation

Hermitian transformation plays a key role in eigenvalue problems using in
quantum mechanics. The adjoint 7" (spoken T dagger) of a matrix T is defined as
Hermitian if it equals the transpose conjugate T* (i.e., T' = T*). In this case, the
Hermitian transformation 7" is also equal to the linear transformation 7 of the
transformation matrix 7' (TT =1).

An arbitrary ket |B) can be transformed by the linear operator T into a ket:

T: B)eRY — T|B) ¢ RY (1.98)

The inner product of the ket |A) and transformed ket 7|B) can be written as
(Griffiths 2005):

(A|TB)=A" -TB = (A'T)- B = (T'A)" - B

= (1fA)" . B= <TTA ‘ B> (1.99)

This result shows that the inner product between the transformed ket \TTA> and ket
|B) is the same inner product of the ket |A) and transformed ket 7|B). As a rule of
thumb, the inner product does not change when moving the transformation
operator T from the second ket into the first bra and changing 7 into 7".

There are some properties of the inner product with a complex number o and its
conjugate o*:

(AlaB)=0(A|B)=(«"A|B) for acC

(xA |B) =" (A|B) = (A | 2'B) for aeC (1.100)

The eigenvalue problem derives from the characteristic equation:

T|A) = A|A); |A) #0, for ieC (1.101)
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The inner product between the ket |A) and its transformed ket is given by
(A|TA) = (A | 2A) = (A | A) (1.102)

Some characteristics of the eigenvalue problem are discussed in the following
section (Shankar 1980; Griffiths 2005):
1. Eigenvalue of the Hermitian transformation is a real number.

According to Eq. (1.99), the inner product in Eq. (1.102) with the Hermitian
transformation 7" (=T) becomes

(A|TA>:<TTA‘A>E(TA|A>

(1.103)
= (A |A) =2 (A A)
Comparing Egs. (1.102) and (1.103), one obtains
A= (1.104)

This result proves that the eigenvalue /4 must be a real number.
2. Eigenkets of the Hermitian transformation are orthogonal.

Given two eigenkets with their different eigenvalues 4 and u, the eigenvalue
problems can be formulated:

TIA) = 2lA);  |A) #0,

7[B) = 1B} [B) £ 0. (1.105)

The inner product between the kets |A) and T|B) can be given according to
Eq. (1.100).
(A| TB) = (A | uB) = u(A | B) (1.106)

Similarly, the inner product between the kets T|A) and |B) can be rewritten
according to Eq. (1.100).

(TA | B) = (JA | B) = /*(A | B) (1.107)

Comparing Egs. (1.106) to (1.107), one obtains the Hermitian transformation vl
(=T) according to Eq. (1.99):

<A|TB):<TTA‘B>:(TA|B)
< A |B)=2(A|B)

(1.108)
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Therefore,
(u—2(A|B)=0 (1.109)

Because the eigenvalues p and A* are different, the inner product (A|B) must be
zero according to Eq. (1.109). This result indicates that the eigenkets |[A) and |B)
are orthogonal.

3. Hermitian matrix is diagonalizable in the normalized basis.

For the eigenvalue problem in Eq. (1.101), there exists an eigenket (eigen-
vector) relating to its eigenvalue. Instead of the formulation given in Eq. (1.105),
the Hermitian transformation matrix can be easily written in the orthonormal basis
le;) for the eigenvalue 4;:

21 0 0 0 0 0
N — Jle: b 0 0 0| _,10 B
Tle;) = Jile;) < 0 0 4 0 L =4 for i=1,2,....N
0 0 0 Ay 0 0

(1.110)

Therefore, the Hermitian matrix T is obviously diagonalizable at changing the
eigenvector basis |X;) into the orthonormal basis |e;). In this case, the eigenvalues
locate on the main diagonal and other matrix elements are zero in the Hermitian
matrix, as shown in Eq. (1.110) (Griffiths 2005).

1.7 Applying Bra and Ket Analysis to Eigenvalue Problems

Many problems in physics and engineering can be formulated similar to

X) = T|X) (1.111)
The solution of Eq. (1.111) can be assumed as

IX) = [E) " (1.112)
where |E) is the eigenvector, 4 is the complex eigenvalue, 1 = o + jo € C in
which o is the eigenfrequency and « is the growth/decay rate.

Calculating the first derivative of the solution, one obtains

IX) = Z|E) " = 2|X) (1.113)
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Substituting Eq. (1.113) into Eq. (1.111), the eigenvalue problem is given as
T|X) = 4X) (1.114)
Equation (1.114) can be rewritten in the matrix form with the identity matrix L
(T — AD|X) = ]0) (1.115)

For non-trivial solutions of Eq. (1.115), the eigenvalue-related determinant must
be zero.

det(T — 1) = |T — 21 = 0 (1.116)

Equation (1.116) is called the characteristic equation whose solutions are the
eigenvalues. The characteristic equation is the polynomial of 1"; n equals two
times of the degrees of freedom (DOF) of the system.

PO =ad +a, 12" 4 Faidhtag =0 (1.117)

There exists an eigenvector (eigenket) for each eigenvalue. The eigenvector results
from Eq. (1.115).

(T — 4D [X;) = (T — A1) [E;)e™ = |0)

Vi € C= (T — 41)|E;) = |0) (1.118)

An example for the eigenvalue problem will be given in the following subsection.
Let the system matrix T be given as:

1 0 O
T=]0 0 -1
01 1

The characteristic equation of the eigenvalues 4 yields

(1-2) 0 0
0 -4 -1
0 1 (1-2)

T — /I

-4 -1
:(l—/l)‘ | (1_/1)‘:(1—/1)[1(1—1)4-1]

=(1-)2=2+1)
1+jx/§>_(l_1—jﬁ> o

:(1—/1)(1— )
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Thus, there are three eigenvalues as follows:

=1

1 V3
AZ—E‘F]Tv
PR B
372715

Using Eq. (1.118), one obtains the eigenvectors of the eigenvalue problem:

e ForAi=/.=1:

Therefore,

Ox1:O—>x1£1

— X —x3=0->x3=—x=0 $|E1>=

S O =
N——

X =0—->x=0

1-jf 0 0 x| 0
0 —(%—i—j@) -1 x| =10
0 1 %—_]\/Tg X3 0
Thus,
((1 V3
(G- =00
0
1 V3 . ;
_<§+]\/7_>x2—x3=0—>x252J = [Ep) = 1| 2
% V3-j
1 V3 .
x”(z—JT)"S:O”S:ﬂ”
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%+J73 0 0 X1 0
0 (3-%) =1 ol =0
. X3 0
0 1 1y
Therefore,
1 3
<§+j§)x1=0—>x1=0
0
1 3 .
—<§—j\/7_>x2—x3=0—>)€25—2j = [E3) = | =2
7 V3+ij
1 V3 .
x2+(§+]7>X3=0—>x3=\/§+J-
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Chapter 2
Tensor Analysis

2.1 Introduction to Tensors

Tensors are a powerful mathematical tool that is used in many areas in engineering
and physics including general relativity theory, quantum mechanics, statistical
thermodynamics, classical mechanics, electrodynamics, solid mechanics, and fluid
dynamics. Laws of physics and physical invariants must be independent of any
arbitrarily chosen coordinate system. However, the tensor components describing
these characteristics heavily depend on the coordinate bases and therefore change
as the coordinate system varies in the considered spaces. Before going into detail,
we provide less-experienced readers with some examples.

Different tensors are listed in Table 2.1, which can be expressed in differently
chosen bases for any curvilinear coordinate. Using Einstein summation conven-
tion, the notation can be shortened. Note that Einstein summation convention is
only valid for the same indices in the lower and upper positions. The relating
contravariant or covariant tensor components can be expressed in the covariant or
contravariant bases (cf. Appendix E). The tensor order is determined by the
number of the coordinate basis. Thus, the component of a first-order tensor has
only one dummy index i relating to a single basis. In the case of a second-order
tensor, its component contains two dummy indices i and j relating to double bases.
Similarly, the component of an N-order tensor has N dummy indices relating to
N bases.

The dummy indices (inner indices) are the repeated indices running from the
values from 1 to N in Einstein summation convention. The free index (outer index)
can be independently chosen for any value from 1 to N, that is, for any tensor
component in the particular coordinate, as shown in the below example. Note that
the dimensions of the dummy and free indices must be the same value of the space
dimensions.

H. Nguyen-Schifer and J.-P. Schmidt, Tensor Analysis and Elementary 35
Differential Geometry for Physicists and Engineers, Mathematical Engineering 21,
DOL: 10.1007/978-3-662-43444-4.2, (© Springer-Verlag Berlin Heidelberg 2014
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Table 2.1 Tensors in general curvilinear coordinates

Type Component Basis Tensor
First-order tensors € RV T°T; g g T = T'g, Tig'
Second-l\j)rder ;ensors T, Tii‘T;v Tij g.g.8.¢ TO= Tijgig!-, T,jg"gj,
CRIxK - Teg Ty
Third-o}rvder te;/lsors N Tk, Tijk]}iky T), g, g, g 2, TO = Tijkgigjg;_(, Tg'g'et,
ERTXREXR B-®  Tluge Tige'y
N-order tensors T Tt s g. g, 8¢ TV = Ti-rggg
ER" . xRY T Ty, gi’ g, Th"gg g.g
gn g

N N

T="Tlgg= ZZ TVg g, i;j: dummy indices
=1 i=1

T =TYg, = ZT’-’gi7 i: dummys; j: free index .

i=1

2.2 Definition of Tensors

The definition of tensors is based on multilinear algebra with a multilinear map.
We consider the real vector spaces Uj,..., U, and their respective dual vector
spaces Vj,..., V,,. Each of their vector spaces belongs to the finite N-dimensional
space R", the image vector space W, to the real space R. A mixed tensor of type
(m, n) can be defined as a multilinear functional T that maps an (m + n) tuple of
vectors of the vector spaces U and V into W (Fecko 2011) (Fig. 2.1):

T:(Uyx--xU,)x (Vi x--xV,) > W
RVx - - xRVxRYx---xRY SR

ncopies mcopies

(2.1)
(ar, ... w; vy, .o Vy) — T(uy, .. vy, .., v,) €R

Mapping the multilinear functional T of the tensor type (m, n) to the contra-
variant basis {gim} of U and covariant basis {g;,} of V, one obtains its images in
W C R. These images are called the components of the (m + n)-order mixed
tensor T with respect to the relating bases:

T =T(g,.. . g ..g") €R (2.2)
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(u,...w,;v,..,v, )

RYx..xR"xR" x..xR"

n copies

m copies

Fig. 2.1 Multilinear functional T

Thus, the (m + n)-order mixed tensor T can be expressed in the covariant and
contravariant bases of the respective vector spaces V and U. In total, the (m + n)-
order tensor T has N“*” components, as shown in Eq. (2.3).

T= 7711;:1" g 8ng . g
TERNX"'XRNXRNX-..xRN (23)

~~
ncopies mcopies

In the case of covariant and contravariant tensors T, the dual vector spaces
V and real vector spaces U are omitted in Eq. (2.1), respectively.

e p-order covariant tensors:
TZ]}‘I...jngjl-"gjn € (Ul Xoeee XUn) (24>
e m-order contravariant tensors:

T=T""g, . .g,€c(Vix--xV,) (2.5)

An Example of a Second-Order Covariant Tensor
An arbitrary vector v can be expressed in the covariant basis g, in the
N-dimensional vector space V as

v=1fg for k=1,2,....N (2.6)

Applying the bilinear mapping T to the vector v and using the Kronecker delta,
one obtains its mapping image Tv. Straightforwardly, this is a tensor of one lower
order compared to the mapping tensor T.
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Tv = Tyg'g’ (Vg)
= Ty (g g g’
=Ty oig/ for i =
= (Ty»")g’ for jk=1,2,...,N
= Tj*gj for j=1,2,...,N

=~

(2.7a)

whereas the second-order covariant tensor T can be expressed as

T =T;g'g’ for i,j =1,2,...,N;
T ¢ RY x RM.

Note that in the case of a three-dimensional vector space R? (N = 3), there are
nine covariant components 7;;. The number of the tensor components can be
calculated by N" (3% = 9), in which n is the number of indices i and j(m=2).

Obviously, that the mapping image Tv is also a tensor of one lower order
compared to the tensor T. The covariant tensor component 7}* can be calculated by

TS =T =g.Tv. (2.7b)

2.3 Tensor Algebra
2.3.1 General Bases in General Curvilinear Coordinates

The vector r can be written in Cartesian coordinates of Euclidean space E?, as
displayed in Fig. 2.2.

r=xe (2.8)
The differential dr results from Eq. (2.8) in

. or .
dr = e;dx' = —dx’ 2.
r € le ( 9)

Using the differentiation chain rule, the orthonormal bases e; of the coordinates
x' are defined by
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Fig. 2.2 Bases of general
curvilinear coordinates in the
space E

o= Or_ ordw
axl u} au] axl (2'10>
Egjg for j=1,2,...,N

Analogously, the bases of the curvilinear coordinates u’ can be calculated in the
curvilinear coordinate system of EV

g ool

oxk
:ekm for k = 1,2,...,N
The curvilinear coordinate u' are functions of the coordinate x'; the covariant
bases in Eq. (2.11) can be calculated using the differentiation chain rule.

_or  or o

80w " adow
. (2.12)
- ou

=ex, for i=1,2,..,N

Thus, the curvilinear basis g; can be written in a linear combination of the
orthonormal basis e; according to Eq. (2.12). The derivative xj’: is called the shift
tensor between the orthonormal and curvilinear coordinates.

Generally, the basis g; of the curvilinear coordinate u’ can be rewritten in a
linear combination of the basis g’; of other curvilinear coordinate u”. The deriv-
ative u* is defined as the shift tensor between both curvilinear coordinates.

o — or ouY
i _/] i
a"ai’? (2.13)
/

—g/ju;j for j=1,2,..,N

8 ou
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In the curvilinear coordinate system (ul, uz, u3) of Euclidean space E3, its basis
is generally non-orthogonal and non-unitary (non-orthonormal basis); that is, the
bases are not mutually perpendicular and their vector lengths are not equal to one
(Simmonds 1982; Klingbeil 1966; Nayak 2012). In this case, the curvilinear
coordinate system (ul, uz, u3) has three covariant bases g;, g, and g3 and three
contravariant bases g', g, and g’ at the origin P, as shown in Fig. 2.2. Generally,
the origin P of the curvilinear coordinates could move everywhere in Euclidean
space. Therefore, the bases of the curvilinear coordinates only depend on the
respective origin P. For this reason, the curvilinear bases are not fixed in the whole
curvilinear coordinates like in Cartesian coordinates.

The vector r of the point P(ul, u2, u3) can be written in covariant and contra-
variant bases.

r=u'g +u'g, +1'g; )14
o 2 3 (2.14)
=ug +ug +uzg

where

ul, uz, u®  are the vector contravariant components of the coordinates (ul, uz, u3);
g1, €2, g3 are the covariant bases of the coordinate system (ul, w, u3);

uy, Uy, uz are the vector covariant components of the coordinates (ul, u?, u3);

gl, gz, g3 are the contravariant bases of the coordinate system (ul, uz, u3).

The covariant base g; is defined by the tangential vector to the corresponding
curvilinear coordinate ' for i = 1, 2, 3. Both bases g; and g, generate a tangential
surface to the curvilinear surface (u'u?) at the considered origin P. Note that the
basis gy is not perpendicular to the bases g, and gz. However, the contravariant
basis g3 is perpendicular to the tangential surface (g,g,) at the origin P. Generally,
the contravariant basis (gk) results from the cross product of the other covariant
bases (g; x g)).

ng =g xg for i j k=123 (2.15)

where « is a scalar factor.
Multiplying Eq. (2.15) by the covariant basis g, the scalar factor o« can be
calculated as

O‘(gk- g) = O‘élli =a=(g X gj)-gk

(2.16)
== (g xg) &= (28 g

The scalar factor o equals the scalar triple product that is given in (Klingbeil
1966):
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0=[g,88) = (8 xg)& = (8 x8) 8= (g x&) &

1

2

1

1
2 2

811 812 813 831 832 4§33 821 822 823
=181 82 &3| = |81 8§12 813|= |81 832 &3 (2.17)
831 832 833 821 822 823 811 812 813

det (gy) = Vg =7
where J is defined as the Jacobian, as given in
ox!  ox!'  ox!

o oul 2 P
Ox! dx/ oxk o ax? ox?

=gy XX _ 10 O Ox 2.1
I 81k6u16u28u3 Oul 0u? 218)
o o ot
ou! Ou? 0B
Thus,
k _ Sijk Eijk
g= \/Lg(gi x g) =~ (g% g) (2.19)

where & is the Levi-Civita permutation symbols in Eq. (A.5), cf. Appendix A.
According to Eq. (2.19), the contravariant basis g* is perpendicular to both
covariant bases g; and g;. Additionally, the contravariant basis g is chosen such
that the vector length of the contravariant basis equals the inversed vector length of
its relating covariant basis.
Therefore,

& (g x gj)'gi

g = = 2.20
&8 N (2:20)

As a result, the relation between the contravariant and covariant bases is given
in the general curvilinear coordinate system (ul,..., uN).

Kk k £ .
.gt=g'g =0; for ik=1,2,...,N
g-g8 =88 k, (2.21)
8.8, =8.8 #0;, for i,k=1,2,... N
The basis g; is called dual to the basis g’ (Itskov 2010) if
g.g/ =0/ for ijj=1,2,..,N (2.22)

where &/ is the Kronecker delta.
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Fig. 2.3 Covariant bases of

142 u3):
orthogonal cylindrical (rn6z) — WU'uaud):

X3
coordinates /__\ u=r;u?=6;ul=z
g3
i it %
-7 N
e Z AN
\' \\\\ %2 g
I
e| R
P A g1
o T~ 2
- 0 \ez N X
Cd
e
1 P /
r

Let {g;, ...., gy} be a covariant basis of the curvilinear coordinates {u'}, the
contravariant basis { gl, gz,..., gN }, the dual basis to the covariant basis, can be
written in the matrix formulation.

G=[g & - & &iG'=|.|=>G"'G=1I (2.23)
gj
gN

where g is the jth row vector of G™'; g; is the ith column vector of G.
The covariant and contravariant bases (dual bases) of the orthogonal cylindrical
and spherical coordinates are computed in the following section.

(a) Orthogonal Cylindrical Coordinates

The cylindrical coordinates (r, 0, z) are orthogonal curvilinear coordinates in
which the bases are mutually perpendicular but not unitary. Figure 2.3 shows a
point P in the cylindrical coordinates (r, 0, z) embedded in the orthonormal
Cartesian coordinates (xl, x2, x3). However, the cylindrical coordinates change as
the point P varies.

The vector OP can be written in Cartesian coordinates (xl, x2, x3):

R = (rcosf)e; + (rsinfe; + ze
(1 )21 (3 Jex +ze3 (224)
=xe + xe+xes
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where

e}, e, and e; are the orthonormal bases of Cartesian coordinates;

0 is the polar angle.

To simplify the formulation with Einstein symbol, the coordinates of u', u?, and
are used for r, 0, and z, respectively. Therefore, the coordinates of P(ul, u?, u3)
are given in Cartesian coordinates:

Lt3

1 2

=rcos0 =u' cosu

x
P(u',u* i) = { x* = rsin0 = u' sinu? (2.25)
Y=z=u

The covariant bases of the curvilinear coordinates are computed from

OoR OR ox/ ox’ .
The covariant basis matrix G yields from Eq. (2.26):
G=[g & gl
oxl ox! ox!
du' 2 P e
e e oo cos 0 rsinf 0 (2.27)
= 51 57 57 = | sinf rcosf O
u u u
3 oxd ox 0 0 1
du' ud ol
The determinant of G is called the Jacobian J.
oxl ax! ox!
ul w2 dud cos@ —rsin0 0
2 2 2
G| =J = O W W TGhg reosO 0| =r (2.28)
ou! our oud
o o ol 0 0 !
du' 2 P
The relation between the covariant and contravariant bases yields from

Eq. (2.22):

g’ g = & (Kronecker delta)

(2.29)

Thus, the contravariant basis matrix G~' results from the inversion of the
covariant basis matrix G, as given in Eq. (2.27).
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g! rcosf rsinf 0
G'=|g| == —-sinf cosO 0 (2.30)
r
g’ 0 0 r

The calculation of the determinant and inversion matrix of G will be discussed

in the following section.
According to Eq. (2.27), the covariant bases can be denoted as

g = (cosO)e; + (sinf)e, +0.e5 = [g| =1
g, = —(rsin0)e; + (rcosf)e; +0.e3 = |g,| =r (2.31)
g;=0.¢ +0.e;+1.e5 = |gs| = 1

The contravariant bases result from Eq. (2.30).
g' = (cosb)e; + (sinf) e +0.e3 = |g'| =1
sin 6 cos 1
g = —<—> e + <—) e+ 0.e3 = |g°| =- (2.32)
r r r
g =0.e +0.e;+l.es= g’ =1

Not only the covariant bases but also the contravariant bases of the cylindrical
coordinates are orthogonal due to

g8 =glg=0
g.g =0 for i #j;
gg/ =0 for i #j.

(b) Orthogonal Spherical Coordinates

The spherical coordinates (p, ¢, 0) are orthogonal curvilinear coordinates in
which the bases are mutually perpendicular but not unitary.

The spherical coordinates (p, ¢, 0) are orthogonal curvilinear coordinates in
which the bases are mutually perpendicular but not unitary. Figure 2.4 shows a
point P in the spherical coordinates (r, 6, z) embedded in the orthonormal
Cartesian coordinates (xl, x2, x3). However, the spherical coordinates change as the
point P varies.

The vector OP can be written in Cartesian coordinates (x', x%, x°):

R = (psin¢cosf)e; + (psingpsinb) e, + pcosde;

2.33
= xlel + x2e2 —|—x3e3 ( )

ol LElUMN Zyl_i.lbl
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Fig. 2.4 Covariant bases of P (0,0,6) — (U W2,U9):
orthogonal spherical psing ulsp;ut=¢;ut=0
coordinates

where

e}, e, and e; are the orthonormal bases of Cartesian coordinates;

¢ is the equatorial angle;

0 is the polar angle.

To simplify the formulation with Einstein symbol, the coordinates of u', u?, and
u® are used for p, ¢, and 0, respectively. Therefore, the coordinates of P(u', u?, u?)
are given in Cartesian coordinates:

x!' = psin¢cos 0 = u' sinu? cos u®

P(u',u*, i) = { x* = psin¢sin0 = u' sinu? cos u’ (2.34)
2

X =pcos¢ =u' cosu
The covariant bases of the curvilinear coordinates are computed from

~_OR_OR ox/ ox’

& =3, o0 o Yoy for j=1,2,3 (2.35)

Thus, the covariant basis matrix G can be calculated from Eq. (2.35).

ou! 0u? Oud

ox? x?r ox?

G = — | o o

e & &l=| 5 5 s
o o X’ (2.36)

ul 0w Al
sin¢pcosd pcospcos —psingsind
= | sin¢sinf pcos¢psinl psin¢gcosd

cos ¢ —psin ¢ 0
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The determinant of the covariant basis matrix G is called the Jacobian J.
sin¢pcos@ pcos¢pcos —psingsind
|G| =J = |sin¢gsinf pcos¢sind  psin¢gcosl
cos ¢ —psin ¢ 0
= p?sin ¢

(2.37)

Similarly, the contravariant basis matrix G~ is the inversion of the covariant
basis matrix G.

gl | psingcosf psingsinh pcos
1 B cos¢pcos cos¢psinf  —sing
6= g | 1| ol 239
. g (5

The matrix product G~' - G must be an identity matrix according to Eq. (2.23).

psingcosf psingsinf pcosp
G_IG—I cos¢pcos) cos¢sind —sing

p sin 0 cos 0 0
- <sin d)) (sin ¢>

sinpcos@ pcospcosd —psingpsind 1 00
sin¢sinf pcos¢sinf  psingcosd | =10 1 0| =1
cos ¢ —psin¢ 0 0 0 1
(2.39)

According to Eq. (2.36), the covariant bases can be written as

g = (sin¢cosf)e; + (singsinfh) e, +cospe; = |g | =1
g, = (pcospcosl)e + (pcosgsinf)e, — (psing)es = |g,| =p  (2.40)
g, = (—psin¢sinb)e; + (psindcosh)e; +0.e3 = |g;| = psing

The contravariant bases result from Eq. (2.38).
g' = (sin¢cos0) e, + (sinpsin0) e, 4 cos pe; = |g1| =1
1 1 1 1
2 . . 2
= |—cos¢pcosl | e + <— cos ¢ sin 0) e — (— sin ) e; = =—
8 (P ¢ ) o ¢ p ¢ |g } p

&= psing ) psing) > & ~ psing

(2.41)
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Not only the covariant bases but also the contravariant bases of the spherical
coordinates are orthogonal due to

g8 =gl g =0
g.g =0 for i #j;
g'g/ =0 for i #j.

2.3.2 Metric Coefficients in General Curvilinear Coordinates

The covariant basis vectors g;, g, and g3 to the general curvilinear coordinates
(', u?, i) at the point P can be calculated from the orthonormal bases (e;, €y, €3)
in Cartesian coordinates x' = x'(u'), as shown in Fig. 2.2.

or Or o

8 =T A% A

ok
:ekw for k= 172,3

The covariant metric coefficients g; are defined as

_ or Or B
8ij = 8i-8 = wow g8 = &ji
oxk ax! oxk ox!
= ﬁ@ekel = 2w Kl

ok

~ Oul du

(2.43)

Similarly, the contravariant metric coefficients gij can be denoted as
g'=gg =¢gg=4¢" (244)

Furthermore, the contravariant basis can be rewritten as a linear combination of
the covariant bases.

g =Alg (2.45)

According to Eq. (2.44) and using Egs. (2.21) and (2.45), the contravariant
metric coefficients can be expressed as
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o = glgh = Aijgj.gk
= AUl = A%
Thus,
' =gUg for j=1,2,3
Analogously, one obtains the covariant basis
g =gug for 1=1,2,3

The mixed metric coefficients can be defined by

g =ga=I(g) &
= (¢"g) (gug') = ¢'2u(g-2)
= ¢'gud} = ¢'gy
- 5;’c
Thus,

ey = ayg’ = 0,

2 Tensor Analysis

(2.46)

(2.47)

(2.48)

(2.49)

(2.49b)

Therefore, the contravariant metric tensor is the inverse of the covariant metric

tensor.

o =gg" =0, M ' M=MM"' =1

(2.50)

where M~! and M are the contravariant and covariant metric tensors.

Thus,

g“ 812 . glN 811 812
METM - g21 gzz ] gZN @1 g»
gNl gm . gNN gN1  EN2

1 0 0

y 0 1 0

o) =00 = |, 1,

0 0 1

8IN

82N

NN (2.51)

According to Egs. (2.42) and (2.49a), the contravariant bases of the curvilinear
coordinates can be derived as
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5fzg gi:g.ﬁejé
ox/ ox/
S = (gk.ﬁe]) € = gk.ﬁ = (2.52)
ou' ouk
K sk _ o
g =0 W T
Thus,
o ol
g/ :%ei for i=1,2,3 (2.53)

Generally, the covariant and contravariant metric coefficients of the general
curvilinear coordinates have the following properties:

8i=8ij=88&7F 5{ (cov. metric coefficient)
&' = ¢/ = g'.g/ # 5/(contrav. metric coefficient) (2.54)

¢/ = g.g’ = 8/ (mixed metric coefficient)

Using Eqgs. (2.42) and (2.53), one obtains the Kronecker delta

. k oul J
5{ = gi.gj = ai.aiek.el = %6155(
Ou’ Ox! Ou’ Ox! (2.55a)
B oxk ou/ B ou’ )
C Ouwoxk Oul
The Kronecker delta is defined by
i 0 for i#j
5 = { L7 ! (2.55b)

As an example, the covariant metric tensor M in the cylindrical coordinates
results from Eq. (2.31).

g1 812 813 1 0 0
M= |g g»n g3|=1[0 r 0 (2.56a)
831 832 833 0 0 1

The contravariant metric coefficients in the contravariant metric tensor M~! are
calculated from inverting the covariant metric tensor M.
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gll 12 g13 1 0 0
M'=|g g2 ¢B|=]0 r2 0 (2.56b)
g31 g32 g33 0 0 1

Analogously, the covariant metric tensor M in the spherical coordinates results
from Eq. (2.40).

8 812 813 1 0 0
M= |gn g2 g3|=|0 p° 0 , (2.57a)
831 8% 83 0 0 (psing)

The contravariant metric coefficients in the contravariant metric tensor M~ ! are
calculated from inverting the covariant metric tensor M.

gll 312 g13 1 0 0
M'=|g2 2 &|=]0 p? 0 (2.57b)
. -2
gl g g8 0 0 (psing)

2.3.3 Tensors of Second Order and Higher Orders

Mapping an arbitrary vector x € R" by a linear functional T, one obtains its image
vector y = Tx (Simmonds 1982; Klingbeil 1966).

T:RY — RV
T:x—y=Tx = T.(xjgj) = ij.gj (2.58)
= x/Tyg (g g) = ijzyﬁf = Tux'g

where T is a second-order tensor € RV x R".
It is obvious that the image vector y = Tx is a tensor of one lower order
compared to the tensor T that can be considered as a linear operator.
The second-order tensor T can be generated from the tensor product (dyadic
product) of two vectors u and v, as denoted in Eq. (2.60).
Let u and v be two arbitrary vectors, they can be written in the covariant and
contravariant bases as
g — o N.
{ e =g C RN’ (2.59)
v=v/g,=vig/ €R

The tensor product of two vectors u - v results in the second-order tensor T.

ol LElUMN Zyl_i.lbl
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T:uveRY - T=u@veR"xR"
=>T= uingigj = uingl-gj = Tijgigj (2.60)
=T =uwyg'g = uvg'g = T;g'g

Note that the terms g;g; and gigi are called the covariant and contravariant basis

tensors, respectively. Hence, they are not the same notations as the covariant and
contravariant metric coefficients g; and g, respectively.

28 7 88 =g
g/ £ge =g
Similarly, one obtains the properties of the mixed basis tensors:
gy #gg=¢g=9
ge' g8 =g/ =9

Each of the covariant and contravariant tensor components 7j; and TV contains
nine independent elements (N> = 9) in a nine-dimensional tensor space R* x R?
in a three-dimensional space (N = 3).

TV = u'v/;

2.61
. 261)

The basis g; of the general curvilinear coordinates is mapped by the linear
functional T in Eq. (2.58) into the image vector T; that can be written according to
Eq. (2.2) as

T, =T.g (2.62)

Each vector T; can be expressed in a linear combination of the contravariant
basis g’ as

where Tj; is the covariant tensor component of the second-order tensor T.
Multiplying Eq. (2.63) by the covariant basis g; and using Eq. (2.62), the
covariant tensor component T; results in

(Tyg) & = (Tg) g =gTg

/ (2.64)
= T;0;=T; = g.T.g

Equation (2.64) can be written in the contravariant bases g’ and g’ as follows:
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T;(g'e) = g.T.g(g'e)
= (g.g)T(g'.g) =515/ =T (2.65)
=T =Ty

Similarly, the vector T is formulated in a linear combination of the covariant
basis g;.

in which 7Y is the contravariant component of the second-order tensor T.
Multiplying Eq. (2.66) by the contravariant basis g', the contravariant tensor
component 7Y can be computed as

(T7g,).¢ = (T.g/)g =¢' Tg

oy . . . (2.67)
=T, =T"=¢g.Tg
Similarly, Eq. (2.67) can be written in the covariant bases g; and g;
T'(gg) = . 1.¢'(2.8)
= (g'g)T(gg) =0T =T (2.68)
=T= Tijgigj

Alternatively, the vector component can be rewritten in a linear combination of
the mixed tensor component.

T =T.g/ =T/g (2.69)

Multiplying Eq. (2.69) by the covariant basis g;, the mixed tensor component T,
can be calculated as

(T/g).g; = (T.g').g =g T.g

P ‘ (2.70)
=T0; =T, =g.Tg

Note that in Eq. (2.70), the dot after the lower index indicates the position of
the basis of the upper index locating after the tensor T. In this case, the tensor T is
located between the lower basis g; and upper basis g’ (Itskov 2010; Nayak 2012;
Oeijord 2005).

Equation (2.70) can be written in the covariant and contravariant bases g; and g
as follows:
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T/(g's) = 2. T.g/(g'g;)
= (g.g)T(gg') =515 = (2.71)
=T= Tng g

Analogously, one obtains the mixed tensor component T‘J

(r¢')-8 = (1€)g =T.(¢'8)
:T(gjg) :g ng (2.72)
:>T’5’— T’ g T.g
Note that in Eq. (2.72), the dot before the lower index indicates the position of
the basis of the upper index locating in front of the tensor T. In this case, the tensor
T is located between the upper basis g' and lower basis g; (Itskov 2010; Nayak
2012; Oeijord 2005).

Equation (2.72) can be written in the covariant and contravariant bases g; and g
as follows:

T(gg') = ¢ T.g(gg)
= (g'e)T(g'g) = 5?T5]j =T (2.73)
=T= T.j'gigj

In a nutshell, the second-order tensor can be written in different expressions
according to the covariant, contravariant, and mixed components.

Tyg'e; Ty =g Tg
T'gg; TV =g . T.g

T® — Al . . 2.74
Tz{glgj; T/ =g.T.g (2.74)
Tigg’; T; =g Tg
Note that if the second-order tensor T is symmetric, then
Ty=Ty TV =TT/ =T} T, =T! (2.75)

Compared to the second-order tensors, the first-order tensor T has only one
dummy index, as shown in

m_ JTigh Ti=Tg
T {Tlg” Ty (2.76)

An N-order tensor T® is the tensor product of the N covariant, contravariant,
and mixed bases of the coordinates:
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T”"'"gigj. .8,
™ = { T .g'¢’. . .g" (2.77)
1

T/ .g¢g..8. .2
The N-order tensors contain the 2 expressions in total. Two of them in respect
of the covariant and contravariant tensor components and (2 — 2) expressions in
respect of the mixed tensor components (Klingbeil 1966). In the case of a second-
order tensor T® for N = 2, there are four expressions: two with the covariant and

contravariant tensor components and two with the mixed tensor components, as
displayed in Eq. (2.74).

2.3.4 Tensor and Cross Products of Two Vectors in General
Bases

(a) Tensor product

Let u and v be two arbitrary vectors in the finite N-dimensional vector space RY,
they can be written in the covariant and contravariant bases as

u=u'g, = ug cRY;
{ & = s (2.78)

v = ngj = ngj €RY
The tensor product T of two vectors generates a second-order tensor that can be
defined by the linear functional T.
e In the covariant bases:
T:uveR' - T=uwv=uVgg =uvgg cR’ xR"
T= uingigj = Tijgigj (2.79)
= ug'e’ = Tyg'e/
where

TV s the contravariant component of the second-order tensor T;
T;; is the covariant component of the second-order tensor T;

e In the covariant and contravariant bases:
T:uveR' - T=u@v= uingigj = uingigj eRY xRY
T =u'vgg = Tigg (2.80)

= uv'g'g =T/g'g

ol LElUMN Zyl_i.lbl
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where 77 and T are the mixed components of the second-order tensor T.

The tensor product T of two vectors in an orthonormal basis (e.g., Euclidean
coordinate system) is an invariant (scalar). The invariant is independent of the
coordinate system and has an intrinsic value in any coordinate transformations. In
Newtonian mechanics, the mechanical work W that is created by the force vector
F and path vector x does not change in any chosen coordinate system. This
mechanical work W = F.x is called an invariant and has an intrinsic value of
energy.

Given three arbitrary vectors u, v, and w in R" and a scalar o in R, the tensor
product of two vectors has the following properties (Klingbeil 1966):

e Distributive property

u(v+w)=uv+uw

(u+v)W=uw + vw

e Associative property

(cu)v =u(av) =auv

(b) Cross product

The cross product of two vectors u and v can be defined by a linear functional T.
T:uveR' > T=uxv=u/(g xg)cR" (2.81)

Obviously, the cross product T of two vectors is a vector (first-order tensor) of
which the direction is perpendicular to the bases of g; and g;.

Using the scalar triple product in Eq. (1.10), the cross product of the bases can
be written as

(g % g) =env/28 = el g (2.82)

where ¢ is the Levi-Civita permutation symbol; J is the Jacobian.
Thus, the cross product in Eq. (2.81) can be expressed as

T=uxv=Tg

e . (2.83)
= (egu/gu'v)) g = (e uv’) g

The covariant component T}, of the first-order tensor T results from Eqgs. (2.81),
(2.82), and (2.83).
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T= uivj (gl X g]) = uivj (gl X gj)‘gk gk = Tkgk (2 84)
= T = V(g % )8 = epe/BuV = el v/ |

The Levi-Civita permutation symbol (pseudo-tensor) can be defined as

+1 if (i, j, k) is an even permutation;
gk = —1 if (i, j, k) is an odd permutation; (2.85)
0if i =jori=kjor j=k

Therefore,
_ &jk = &k = & (even permutation); 5 36
Eijk = —&jtj = —&kji = —&jix (odd permutation) (2.86)

The permutation symbol ¢ contains totally 27 elements (N" = 3%) for i, Js
k (n = 3) in a 27-dimensional tensor space R} x R® x R®.

Note that the permutation symbol is used in Eq. (2.83) because the direction of
the cross product vector is opposite if the dummy indices are interchanged with
each other in Einstein summation convention (cf. Appendix A).

vegi=Jg = (g xg)=—(gx g)
L gt ik (gi\/; g) _ s,-,k(gij x 8) (2.87)

= (gi X gj) = sijk\/ggk = Siijgk

where J denotes the Jacobian.

2.3.5 Rules of Tensor Calculations

In order to carry out the tensor calculations, some fundamental rules must be taken
into account in tensor calculus.

1. Calculation of tensor components

Let T be a second-order tensor that can be written in different tensor forms:
T= legigj = ﬁgigj = Tijgigj = Tijgjgi (2.88)

Multiplying the first row of Eq. (2.88) by the covariant basis g;, one obtains
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TV (g-g)8 = Tgig = Tig

. N i (2.89a)
=T, =Tg; for j=1,2,...,N

Analogously, multiplying the second row of Eq. (2.88) by the contravariant
basis gk, one obtains

T;(g" g')g =T;5"g = T'g
. i (2.89b)
=T =T;g" for j=1,2,....N

Multiplying Eq. (2.89a) by g, the contravariant tensor components result in
TV =Tigh for k=1,2,..,N (2.90a)

Multiplying Eq. (2.89b) by gy;, one obtains the covariant tensor components

T, =Tlg, for k=1,2,...,N (2.90b)

Substituting Egs. (2.89a) and (2.90a), one obtains the contraction rules between
the contravariant tensor components.

Ti =T"g,g" for k,p=1,2,....N (2.91a)

Similarly, the contraction rules between the covariant tensor components result
from substituting Egs. (2.89b) and (2.90b).

T; = T,-pg”kgkj for k,p=1,2,....N (2.91b)

Analogously, the contraction rules between the mixed tensor components can
be derived as

T =Tg"gy for k,p=1,2,..,N (2.92a)
Similarly, one obtains

T/ =TPgug" for k,p=1,2,...,N (2.92b)

2. Addition law

Tensors of the same orders and types can be added together. The resulting tensor
has the same order and type of the initial tensors. The tensor resulted from the
addition of two covariant or contravariant tensors A and B can be calculated as
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C=A +B=(Aj+By)gg’e = Cug'g/s" =B+ A
= Cijxt = Ak + Bijx = By + Ay

C=A+B=(A"+B")ggg =Clggg =B+A
= C% = A% 4+ B = B 4 AT

(2.93)

Similarly, the tensor resulted from the addition of two mixed tensors A and
B can be written as

C= A+ B= (A +B)) g,e,8e"
=Clig g gg/s =B+A (2.94)

P4 __ AP4 P4 __ pPq Pq
= Cll = A% + Bl = B + A%

Straightforwardly, the addition of tensors is commutative, as proved in
Eqgs. (2.93) and (2.94).

3. Outer product

On the contrary, the outer product can be carried out at tensors of different orders
and types. The tensor components resulted from the outer product of two mixed
tensors A and B can be calculated as

AB = (A7ig,0.6'%) (Big'g'n 88
= Clig 8, 8'g'e'e's g8 #BA (2.95)

Pqrst __ APqprts __ pris APq
= Cju =A;j By =By A

The outer product of two tensors results a tensor with the order that equals the
sum of the covariant and contravariant indices. The outer product is not com-
mutative, but their tensor components are commutative, as shown in Eq. (2.95). In
this example, the resulting ninth-order tensor is generated from the outer product
of the mixed fourth-order tensor A and mixed fifth-order tensor B. Obviously, the
outer product of tensors A, B, and C is associative, i.e., A(BC) = (AB)C.

4. Contraction law

The contraction operation can be only carried out at the mixed tensor types of
different orders. The tensor contraction is operated in many contracting steps
where the tensor order is shortened by eliminating the same covariant and con-
travariant indices of the tensor components.

We consider a mixed tensor of high orders. In this example, the mixed fifth-
order tensor A of type (2, 3) can be transformed from the coordinates {u'} into the
barred coordinates {ﬁi}. The transformed tensor components can be calculated
according to the transformation law in Eq. (2.144).
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—ii on' 0n/ du’ du’ du'
i
ki dup dud duk du! i & (296)

Carrying out the first contraction of A in Eq. (2.96) at [ = i, one obtains the
tensor components

ou' ou’/ du’ du® du'

Z9 _ O 0w O’ 0w’ Ou”
kim ™ dyp dud duk Ol i e

ou’ ou” ou' <6u au) v

= Dud ok owm \owr Ot )

ou' du” ou'
_ B TH TR ssAra (2.97a)
Oud du* Oum OpA
auf Ou” ou'
= dud ok o i
_ ou’ ou” ou’
J
< B = Qud duk dum E

As a result, the resulting tensor components B are the third-order tensor type
after the first contraction of A at s = p:

APISP — AP = B, (2.97b)

rst mt —

Further contracting the tensor components B in Eq. (2.97a) at k = j, one obtains

iy ou' (ol ou"
ZI = — | — q
Bjm o™ (au‘l aw’) Br
_ a_“m 3B,
Qu (2.98a)
ou'
= 5 B
_ ou'
& Cr=5C

As a result, the resulting tensor components C are the first-order tensor type
after the second contraction of B in Eq. (2.98a) at r = ¢:

B16! =B = C, (2.98b)

qt —

5. Inner product

The inner product of tensors comprises two basic operations of the outer product
and at least one contraction of tensors As an example, the outer product of two
er _te e ixth-order tensor.
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AB = (AZ”gmgpgq) (Byg,g'g)
=A]"B.g'¢g,8,8,¢'¢

(2.99)

Using the first tensor contraction in Eq. (2.99) at r = g, one obtains the
resulting fourth-order tensor components of the inner product.

AIVB! 5" = AIPBY, = CIP (2.100)

stYq st =

Similarly, using the second tensor contraction law in Eq. (2.100) at p = s, the
resulting second-order tensor components result in

cwy = =D (2.101)

st —

Finally, applying the third tensor contraction law to Eq. (2.101) at m = ¢, the
resulting tensor component is an invariant (zeroth-order tensor).

DI's" = D' =D (2.102)

In another approach, one can calculate the tensor components of the inner
product of two contravariant tensors A and B multiplying by the metric tensor.

AijkBlm N AijkB]mglk (2 1 03)
Using Eq. (2.89a), one obtains the resulting tensor components
B"gy = B} (2.104)

Substituting Eq. (2.104) into Eq. (2.103) and using the tensor contraction law,
one obtains the resulting tensor components

Cim = ATk = BAT* (2.105)
Equation (2.105) denotes that the inner product of the tensor components is
commutative.
6. Indices law

Using the metric tensors, the operation of moving indices enables changing indices
of the tensor components from the upper into lower positions and vice versa.
Multiplying a tensor component by the metric tensor components, the lower index
(covariant index) is moved into the upper index (contravariant index) and vice versa.

— Moving covariant indices i, j to the upper position:

Al — Ajg" = Al — A" = A (2.106a)
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— Moving contravariant indices i, j to the lower position:
Al] — Akg]l = Akl — Aklgzm = Apim (2106b)

7. Quotient law

The quotient law of tensors postulates that if the tensor product of AB and B are
tensors, A must be a tensor.

(AB = C. tensor) N (B."tensor) = (A.".tensor) (2.107a)

Proof Using the contraction law, the barred components in the transformation
coordinates { ﬁi} of the tensor product AB result in

ALB] = C = AiB] = C, (2.107b)

According to the transformation law (2.144), the transformed components in the
coordinates { ﬁi} of the tensors B and C can be calculated as

Bl au ou' ou?

k= P aum au" auk , (2.107(:)
ol en it du?

7T Y9y ol

Substituting Eq. (2.107¢) into Eq. (2.107b) and using the contraction law, one
obtains

_ =i ARl AP =l q
k (an ou' Ou' du ) _ Ou' du

P Qum du dirk 9 Qun dul

y (2.107d)
(AP B'"") Cu u
maP ) Qut ou/
Rearranging the terms of Eq. (2.107d), one obtains
i a,m Q5 mq a7 j n-—P
Ou™ Ou 6u16 aua . (2.107¢)
_. Ou' ouw? u?
gmn. Z7 k P
:>VP an#o l]aumak mq opJ

Applying the inner product by <a” Gi ) to Eq. (2.107¢), one obtains the barred

components of A at r = m and s = p.
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kST 5P — AP Ou? (614’ auk>

yomes "4 Qus \ Ou' ou’

_ ouk du™ du?
= Ak =Ar —
i "4 dup Oul Oul

(2.107f)

Equation (2.107f) proves that A is a mixed third-order tensor of type (1, 2), cf.
Eq. (2.107c¢).

8. Symmetric tensors

Tensor T is called symmetric in the given basis if two covariant or contravariant
indices of the tensor component can be interchanged without changing the tensor
component value.

T; = Tj: symmetric in i and j
TY = T/': symmetric in i and j
T = T/9: symmetric in j and k (2.108)
TI’;Z‘ = Té’;‘ : symmetric in p and g
In the case of a second-order tensor, the tensor T is symmetric if T equals its

transpose.

T=T1" (2.109)

9. Skew-symmetric tensors

The sign of the tensor component is opposite if a pair of the covariant or con-
travariant indices are interchanged with each other. In this case, the tensor is skew-
symmetric (antisymmetric).

Tensor T is defined as a skew-symmetric tensor (antisymmetric) if

T = —Tj: skew-symmetric in 7 and j

T% = —T/: skew-symmetric in i and j
Tk — _ ik g, tric in 7 and k (2.110)
wq = — Tyt skew-symmetric in j an
TI‘;];‘ = —Téf;‘ : skew-symmetric in p and ¢

In the case of a second-order tensor, the tensor T is skew-symmetric if T is
opposite to its transpose.

T=-17 (2.111)
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An arbitrary tensor T can be generally decomposed into the symmetric and
skew-symmetric tensors:

T= %(T + TT) + %(T o TT) = Tsym + Tskew (2112)
Proof

e The first tensor Ty, is symmetric:

Tym = 3(T+T7) =T}, (qed)

sym

e The second tensor Tg.y, i skew-symmetric:

1
Taew = 5(T = T") = ~Te, (ged)

2.4 Coordinate Transformations

Tensors are tuples of independent coordinates in a finite multifold N-dimensional
tensor space (RY x - x RY). The tensor describes physical states generally
depending on different variables (dimensions). Each physical state can be defined
as the point P(ul,..., u™) with N coordinates of u'. By changing the variables, such
as time, locations, and physical characteristics (e.g., pressure, temperature, density,
velocity), the physical state point varies in the multifold N-dimensional space.

The tensor does not change itself and is independent in any coordinate system.
However, its components change in the new basis by the coordinate transformation
since the basis changes as the coordinate system varies. In this case, applications of
tensor analysis have been used to describe the transformation between two general
curvilinear coordinate systems in the multifold N-dimensional spaces. Hence,
tensors are a very useful tool applied to the coordinate transformations in the
multifold N-dimensional tensor spaces. High-order tensors can be generated by a
multilinear map between two multifold N-dimensional spaces (cf. Sect. 2.2). Their
components change in the relating bases by the coordinate transformations, as
displayed in Fig. 2.5.

In the following section, the relations between the tensor components in dif-
ferent curvilinear coordinates of the finite N-dimensional spaces will be discussed.

2.4.1 Transformation in the Orthonormal Coordinates

The simple coordinate transformation of rotation between the orthonormal coor-
dinates x; and u; in Euclidean coordinate system is carried out.
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Tensor components]
T,

i

of any basis ependent on the basis

Tensor components
Basis{g, } changed
T, 2T,

[TensorT independent] :>[ Tensor components ]
d

Fig. 2.5 Tensor and tensor components in different bases

An arbitrary vector r (first-order tensor) can be written in both coordinate
systems:

r = x;e; +xe; = x;e;

(2.113)
=g + g = u;g;
The vector components in the coordinate u; can be calculated in
uy = cos 0y1x; + cos O1x:
1 11X1 12X2 (2.114)
uy = cos 0y1x1 + cos O0xx;
Thus,
| _eosOicosOi | x| gy (2.115)
125 [0 1) 921 COS 922 X2
where T is the transformation matrix.
Setting 0,; = 0, one obtains
cos 011 = cos 0; cos 01> = cos (0 + g) = —sinf

cos U1 = cos (0 — g) =sin 0; cos O, = cos b

Therefore, the transformation matrix T becomes

sinf cosf

T— |costn cosOp| _ fcosO —sin0 (2.116)
cos 0y cos 0y
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Fig. 2.6 Two-dimensional x,
coordinate transformation of A
rotation

The transformed coordinates can be computed by the transformation 7:

Tix—u=Tx: || = |c080 —sin0] x (2.117)
u sind cosf X

where 0 is the rotation angle of the rotating coordinates u;.
Transforming back Eq. (2.117), one obtains the coordinates x; (Fig. 2.6)

T 'iuox=T u: | Y] = cos sin0 | |u (2.118)
’ x —sinf cosO | | uy '

The vector component on the basis is obtained multiplying Eq. (2.113) by the
relating basis e; or g;.

xi=re; 1i=1,2
. (2.119)
up=rg; j=12

Substituting Eq. (2.119) into Eq. (2.117), one obtains the transformation matrix
between two coordinate systems.

[2] _ [cos@ —sinf)].[el] g-Te 210

sin cos0 e
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Fig. 2.7 Basis transformation of general curvilinear coordinates in E¥

Similarly,

{el] = [ cos 0 Sing].[gl] se=T'g (2.121)

—sin0 cos0 || g,

2.4.2 Transformation of Curvilinear Coordinates in E"

In the following section, second-order tensors T are used in the transformation of
general curvilinear coordinates in Euclidean space EN, as shown in Fig. 2.7.

The basis g; of the curvilinear coordinate {u'} can be transformed into the new
basis g; of the curvilinear coordinate {#'} using the linear transformation S. The
new covariant basis can be rewritten as a linear combination of the old basis.

S:g—g="Sg<G=GS (2.122)

where S/ are the mixed transformation components of the second-order tensor S.
The old covariant basis results can be calculated as
or Or oW i

= =g (S )= (s

. e i ou’
& = ow ~ wow — 8 )

i o

(2.123)

Inversing the basis matrix in Eq. (2.122), the new contravariant basis can be
calculated as

G =(GS) =86 =g =(s7)¢ (2.124)

Multiplying Eq. (2.124) by the linear transformation S, the old contravariant
basis results in

G '=SG" =g =S5g (2.125)




2.4 Coordinate Transformations 67
According to Egs. (2.11) and (2.122), the new covariant basis can be calculated as

or _ Oraut _ ok

e I
8 =ow awow B T S (2.126a)

Combining Egs. (2.123), (2.124), and (2.126a) and using the differentiation
chain rule, one obtains the relation of the mixed transformation components
between two general curvilinear coordinates in Euclidean space EN.

gg=-gg- (Sil)jsjl'cglgk = (Sil);SJI'C‘S;c

i ou' dut o' ;
— N\ ok — — 5 2.126b
= (s )kS] T oukow  ow 9 ( )

Therefore, the transformation tensor S can be written as

[ou'  Ou' ou' ]
' w2 T duV
ou®>  ou? ou?
S=|2a o2 ° | ERVxRY (2.127a)
ouV  ouV ouV
Lou' o2 ouV

The transformation tensor S in Eq. (2.127a) is identical to the Jacobian matrix
between two coordinate systems {u'} and {u'}.
Inverting the transformation tensor S, the back transformation results in

[ o' ou' o' ]
ou' T duV
B KUl IR
S'=|3,7 32 ° 3N | €RVxR (2.127b)
ou"  ouV oV
Loul du?  ouV

The relation between the new and old components of an arbitrary vector v (first-
order tensor) is similarly given in the coordinate transformation S according to
Eqgs. (2.122) and (2.124).

Vi =g.Vv= S{gj-(ngj) =Sl

o N L (2.128)
V=gv=(S 1)J.g’.(v’gj) =(S 1)jv’
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Using Eq. (2.74), the relation of the components of the second-order tensor T
can be derived.

e Covariant metric tensor components:

T; =g Tg = (ngk)-T(S;gl)

(2.129)
= 5:8i(2-T-g) = S;S/Tu
e Contravariant metric tensor components:
TV =g Tg = (S7), g T.(s")e 210
SN (a1 —1\i (o-1Y/ '
= (§7)(s7) (" Tg) = (s71), (), 7"
e Mixed metric tensor components:
T —g.Tg = (S’?g ).T. s71)'g!
SR &) 157, (2.131)

= S(s7)) (1) = SF(s )il

Note that in Eq. (2.131), the dot after the lower index indicates the position of
the basis of the upper index locating after the tensor T. In this case, the tensor T is
located between the upper basis g' and lower basis g;.

T =g.Tg = (S'),g"T. (sj.g,)

. , (2.132)
= (57 Si(gTg) = (57, ST

Note that in Eq. (2.132), the dot before the lower index indicates the position of
the basis of the upper index locating in front of the tensor T. In this case, the tensor
T is located between the upper basis g' and lower basis g;.

2.4.3 Examples of Coordinate Transformations

(a) Cylindrical Coordinates

The transformation S from Cartesian {u'} to cylindrical coordinates { @'}:
2

u' = rcos =i cosi

S:{ u* = rsin0 =i sinii?
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The covariant transformation matrix S can be calculated as

ou' ou' ou'
on' ow’ o cosf) —rsinf O
S= a_'f? a_i G_sz = | sinf rcosf O
o oo ae| L0 0
ou! ow? o
The determinant of S is called the Jacobian J.
ou' ou' Ou
6_17; a_ﬁz a—ﬁz cosf) —rsinf O
IS| = % % % =J=|sin0 rcosf® O|=r
0 0 1

o o o

ou' ou? oud

The contravariant transformation matrix S~ results from the inversion of the
covariant matrix S.

ab_’; ab_’i a’fi rcos rsinf 0

S = 61 ai al =—| —sinf cosf O
ou! ou? oud r

0 0 r

o’ ow owd
Ou! ou? o’

(b) Spherical Coordinates

The transformation S from Cartesian {u'} to spherical coordinates { @'}:

2 3

cosu
3

u' = psingcos0 =u'sini

2

S:{ u? = psingsind = i sin® cos it

u? = pcos ¢ = u' cosi?

The covariant transformation matrix S can be calculated as

ou' ou' ou!
612; 61‘42 aﬁz sinpcos pcospcos —psingsinb
S= % % % = | sin¢gsin® pcos¢sind psingdcosl
u! ou* Oou

6_143 6_u3 8_143 cos ¢ —psin ¢ 0
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The determinant of S is called the Jacobian J.

ou' ou' ou'
' o owd
ou> ou* ou?
' o oW’
o o oud
' o oW’
sin¢pcosf pcos¢pcosd —psin¢sinfh

S| =

Il
~

= |singsind pcos¢psind psindcosl | = p*sin
cos ¢ —psin ¢ 0

The contravariant transformation matrix results from the inversion of the matrix S.

ou' ou' ou'
ol 02 ok psingcosh psingsinl pcosd
ou? ou® ou? 1| cosgpcos® cospsind —sing

W

ou! ou? Ou _; B sin 0 cos 0 0
o o o ng) g

ou! Qu? oud

2.4.4 Transformation of Curvilinear Coordinates in R

In the following section, second-order tensors T will be used in the transformation
of general curvilinear coordinates in Riemannian manifold RN, as shown in
Fig. 2.8. In Riemannian manifold, the bases g; and g; of the curvilinear coordinates
u' and @ do not exist any longer. Instead of the metric coefficients, the transfor-
mation coefficients that depend on the relating coordinates have been used in
Riemannian manifold (Klingbeil 1966).
The new barred curvilinear coordinate #' is a function of the old curvilinear
coordinates i, j = 1,2,..., N. Therefore, it can be written in a linear function of W,
= . u)
=i =aw for j =1,2,..,N (2.133)

= du' = ddu’ for j = 1,2,...,N

where Ez} is the transformation coefficient in the coordinate transformation S.
Using the chain rule of differentiation, one obtains
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Fig. 2.8 Basis transformation of general curvilinear coordinates in RY

7l
dit = %dui = aldu’
we (2.134)
i ou'
7 du

Analogously, the transformation coefficients of the back transformation result in

ou'

du' = —du’ = d;di
u "y (2.135)
i o
=4 = S

Combining Eqs. (2.134) and (2.135) and using the Kronecker delta, one obtains
the relation between the transformation coefficients
B ou' 0w/ ou'

~Swonk ok (2.136)

& (4) (@) = (@) (<) =1

The relation of the second-order tensor components between the new and old
curvilinear coordinates can be calculated using Eq. (2.133).

T = Tyt = (T a’.‘a’.> uu!
SN (2.137)
= Tyu'v’

Thus,

(2.138)
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In the same way, the covariant, contravariant, and mixed components of the

second-order tensor T between both coordinates in the transformation can be
derived as:

e Covariant tensor components:

TU = a a; T]d T Q;Tkl (2139)

e Contravariant tensor components:

79 = dialT" = TV = aialT! (2.140)
e Mixed tensor components:
T/ =T, = T/ = d'alT] (2.141)

T = akalTk & T’ =a alTk (2.142)

Generally, the transformation coefficients of high-order tensors can be alter-

natively computed as
gl _ (Ol 0ul Qu™ (0w T 7,
v ouP Oud ou’” Ou'dul ) ¥ (2143)
= (aﬁaéaf’) (Zlfc_l;) The
Therefore,

sz ou* ou' ou™\ (ou* du'
T.‘m =\~~~ A A qur
v OuP Qut du ) \ dut dul )~ (2.144)

= (@aar) @) T

2.5 Tensor Calculus in General Curvilinear Coordinates

In the following sections, some necessary symbols, such as the Christoffel sym-
bols, Riemann—Christoffel tensor, and fundamental invariants of the Nabla oper-
ator have to be taken into account in the tensor applications to fluid mechanics and
other working areas.

2.5.1 Physical Component of Tensors

Various types of the second-order tensors are shown in Eq. (2.74). The physical
e omponent on its covariant unitary basis
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g?. Therefore, the basis of the general curvilinear coordinates must be normalized
(cf. Appendix B).

Dividing the covariant basis by its vector length, the covariant unitary basis
(covariant normalized basis) results in

g=b o B e (2.145)

|g:| 8 i)

The covariant basis norm Ig;| can be considered as a scale factor #;.
hi = |g;| = \/gG) (nosummationoveri)

Thus, the covariant basis can be related to its covariant unitary basis by the
relation of

g = V8g = hig (2.146)
The contravariant basis can be related to its covariant unitary basis using
Eqgs. (2.47) and (2.146).
g =g'g =g'ng (2.147)
The contravariant second-order tensor can be written in the covariant unitary
bases using Eq. (2.146).
T =Tigg = (T'hh) g8 = T"gg (2.148)
Thus, the physical contravariant tensor components result in
T = T (2.149)
The covariant second-order tensor can be written in the contravariant unitary
bases using Eq. (2.147).
T =Tyg's = (8" nhi) gig = T8 (2.150)
Similarly, the physical covariant tensor component results in

T = Tyg" e iy (2.151)

y

The mixed tensors can be written in the covariant unitary bases using
Eqgs. (2.146) and (2.147)

T= T;.gigj = Tjigi (gikgk)
= Ti(hg)) (¢*egs) = (T M) g (2.152)

= (1)) ge
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Thus, the physical mixed tensor component results from Eq. (2.152):

(T;')*z Tig*hih (2.153)

2.5.2 Derivatives of Covariant Bases

Let g; be a covariant basis in the curvilinear coordinates {u'}, the derivative of the
covariant basis with respect to the time variable ¢ can be computed as

. Og; 0 for\ _ .
b= =% <@> = i, (2.154)

Due to «' is a differentiable function of Eq. (2.154) can be rewritten as

. _agi_%aij_

= =2 =g 2.155
8= % “ouwor B (2.155)
where g;; is called the derivative of the covariant basis g; of the curvilinear
coordinates {u'}.

Using the chain rule of differentiation, the covariant basis of the curvilinear
coordinates {u'} can be calculated in Cartesian coordinates {x'}.

or  Or ox’
Similarly, one obtains the covariant basis of the coordinates {x'}.
or  Or out ‘
ep = @ = W@ = gkup (2157)

The derivative of the covariant basis of the coordinates {u'} can be obtained
from Eqgs. (2.156) and (2.157).

_ Og 6(ep xp’) o

8 0w T Tow  ow
_ A a_x”l B a_uk 0%k (2.158)
P o &= OxP Ouidu’ &k

Efggk for k=1,2,...,N
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The symbol Fg in Eq. (2.158) is defined as the second-kind Christoffel symbol,

which has 27 (= 3%) components for a three-dimensional space (N = 3).
Thus, the second-order Christoffel symbols that only depend on both coordi-
nates of {#'} and {x'} can be written as

. ouk oM

i dxP ouidul
2.159
_out ot - ( )
T o dwioui

The result of Eq. (2.159) proves that the second-kind Christoffel symbols are
symmetric with respect to i and j.

The second-kind Christoffel symbols are given by multiplying both sides of
Eq. (2.158) by the contravariant basis g’.

Ff;(gk-gl) = F§5i = gl-gi,j

(2.160)
= Fﬁj = gl.glj

Substituting Eq. (2.158) into Eq. (2.155), one obtains the relation between the
covariant basis time derivative and the Christoffel symbol.

g =g i = Tjilg, (2.161)

Furthermor_e, the covariant basis derivative can be calculated in Cartesian
coordinate {x'} using Eq. (2.156).

o o) 2)

8ij ou/ ou/ P dui [

(2.162)

According to Eq. (2.159), the second-kind Christoffel symbols can be rewritten
as

¢ ouk 0% ok 0%

U Oxp Quidw QP Owdu! (2.163)
_ Lk k
u,pxﬁ'j u pxzt

2.5.3 Christoffel Symbols of First and Second Kind

According to Eq. (2.160), the second-kind Christoffel symbol can be defined as
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. k o*r , o
=y, =8 x72-=8 ——
i Ou'Oul Ow/ou (2.164)
= gk'gi,/' = gk'gj,i = F;ci

Equation (2.164) reconfirms the symmetric property of the Christoffel symbols
with respect to the indices i and j. Obviously, the Christoffel symbols are coor-
dinate dependent; therefore, they are not tensors.

In order to compute the second-kind Christoffel symbols in the covariant metric
coefficients, the derivative of g;; with respect to u* has to be taken into account.

0g;i (2.165)
= 8ijk = Y = (gi'gj),k: 88 T 8-k

Using Eq. (2.158) at changing the index j into k; then, i into j, one obtains the
following relations

g = hg g =he, (2.166)

Substituting Eq. (2.166) into Eq. (2.165), one obtains the derivative of g; with
respect to k.

8ijk = 8ik-8 + 8ix-8
=Tg,g+ g8 (2.167)
=T58y + T8,

Interchanging k with i in Eq. (2.167), one obtains
8ii = Digi + Thigy (2.168)
Analogously, one reaches the relation interchanging k with j in Eq. (2.167).
gikj = Uiigpe + T8, (2.169)

Combining Egs. (2.167), (2.168), and (2.169), the Christoffel symbols can be
written in the derivatives of the covariant metric coefficients.

1
gyl = 5(gij,k + 84, — 8ikj) (2.170)

Multiplying Eq. (2.170) by g%, the Christoffel symbols result according to
Eq. (2.50) in
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7 gy8? = Th50

1 (2.171)
= Tl = 287 (8k + i — 8iks)
Changing j into p, k into j, and ¢ into k in Eq. (2.171), one obtains
k _ Lo e )k
L= E(glp,l +8ipi — 8irp )8 (2.172)

= F,’jpgkp

Changing the index p into %, the first-kind Christoffel symbol I';;, in Eq. (2.172)
that has 27 (= 3*) components for a three-dimensional space (N = 3) is defined as

1
=5 (gt + giki — i) (2.173a)
= gpkrg for p=1,2,...,N

Other expressions of the Christoffel symbols can be found in some literature.

2.173b
ngk{ipj}zgpkl"g- for p=1,2,...,N ( )

2.5.4 Prove that the Christoffel Symbols are Symmetric
1. The first-kind Christoffel symbol is symmetric with respect to i, j
According to Eq. (2.173a), the first-kind Christoffel symbol can be written as

1
Ly = E(gik,/' + gjki — 8ijk)
Interchanging i with j in the terms on the RHS, one obtains
1
Ly = E(gjk,i + 8itj — &jik)

= Tju(ged.)

2. The second-kind Christoffel symbol is symmetric with respect to i, j
Using Eq. (2.172), the second-kind Christoffel symbol can be expressed as
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k __ K
Iy =¢" Ty

Due to the symmetry of the first-kind Christoffel symbol, the second-kind
Christoffel symbol results in

[ = g7 Ty, = ¢ Ty

=T (qed)

2.5.5 Examples of Computing the Christoffel Symbols

Given a curvilinear coordinate{u'} with u' = u; W = V; > = w in another

coordinate {x'}, the relation between two coordinate systems can be written as

1

X = uv
x2:w
x3:u2—v

The covariant basis matrix G can be calculated from

oxl ox! ox!
au; aui auj v u 0
8 0 )

G=[g g g]= ooy o) 0 1
ou! Ou? oud
3 o oxd u =10
du' AP

Therefore, the covariant bases can be given in

g =0, 2u)
g = (ua Oa _1)
g3 = (07 L, 0)

The determinant of G that equals the Jacobian J of

v u 0
IGl=J=|0 0 1|=24+v#0
2u -1 0

The contravariant basis matrix G~ is the inverse matrix of the covariant basis
matrix G.
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g! ox! o2 ol
0| | ] ou?r o ou?
S - Bl e d e
3 xI  Ox? Ox
g o o ol
oxl Ox2 ol
1 0 u JU 0 w!
=—1|2u 0 —v|=|2ust 0 —w1
0 (2u®+v) 0 0 1 0
Thus,
1 1
Gll=—_ -
67 QQur+v) J

k pil i Tknil _ Al
AljB;c = Cj = Al.jB}c = Cj
Thus, the contravariant bases result in

J7(1, 0, u)
J7'(2u, 0, —v)
J7H0, 2u* +v, 0)

g1
g2
g3

Some examples of the second-kind Christoffel symbols of 27 components can
be computed from Eq. (2.160).

FZ = gi,jgk =

I =g,g =701 +0.0+2u) = 2us"
I, = 812 g =7 '114+004+0u)=J"
Ty =gg =7"'(0.1+0.0+0u) =0

I3, = g,8 =77'(0.0+0.(2¢> +v) +0.0)
I3 = g8 =77 (0.040.(262 +v) + 0.0)

0
0

The first-kind Christoffel symbols containing 27 components in R® can be
computed from Eq. (2.173a).

1—‘ijk = gpkrg' = (gpgk)rz fOI' p= 1’ 2’ 3
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2.5.6 Coordinate Transformations of the Christoffel Symbols

The second-kind Christoffel symbols like tensor components strongly depend on
the coordinates at the coordinate transformations. The curvilinear coordinates {u'}
is transformed into the new barred curvilinear coordinates {i'}. Therefore, the old
basis is also changed into the new basis.

The second-kind Christoffel symbols can be written in the new basis of the
barred coordinates {it'}.

I
ry=g¢. =g, (2.174)

Using the chain rule of differentiation, the basis of the coordinates {u’} can be
calculated as

o - or  or out
? " Qul Ot dup
2.175
o .
- gkaup

Multiplied Eq. (2.175) by the new contravariant basis of the coordinates {u'},
one obtains changing the indices m into k, and p into 1.

m L ooout o ouk oum
&8 “E G, e aw
. . ey O
= (2"g)¢ =2"(g,2) =" =5 (2.176)
. ouf
= gk :ng

The new covariant basis of the coordinates {i'} can be calculated as

_ or B or ouw? ouP

& = o~ ow o 2.177)

AT

Thus, the new covariant basis derivative with respect to j of the coordinates
{i#'} results in

. 00 (W
8ii = Ba/ ~ 0w \ow

o*w our 0g,

~ owon > " ow ow

(2.178)
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Substituting Egs. (2.176) and (2.178) into Eq. (2.174), one obtains the
second-kind Christoffel symbols in the new basis.

I 5 = gkgi,j
ok, w u 0g, (2.179)
~ ol ® \owon & " ol 0w

Using Eq. (2.166) and the chain rule of differentiation, the second term in the
parentheses of Eq. (2.179) can be computed as

agp ag,, oud
auf auq al/tj (2 1 80)

ou? oul /.
= S0 = a7 (Tt

Inserting Eq. (2.180) into Eq. (2.179), the transformed Christoffel symbols in
the new barred coordinates can be calculated as

I =g'g;
dik [ Pw du du
= W aujau, (g gp) a a j pq(g gr)
Lk (@ D, (2.181)
" Ou! \owiow P owidui "1

o ( %l ouP duf r >

= oul \owow T owow

Therefore, the transformed Christoffel symbols in the new barred coordinates
{i'} result in

—k —k A2 1
=k -y Ou'ow’du! Ou' Ou
U5 =Vou g o ow + ol oo (2.182)

Rearranging the terms in Eq. (2.181), the second derivatives of u’ with respect
to the new barred coordinates result in

o dwow 0w owl ™
%! B oul -,  OuP dut
owidnw/  omwk ¥ omiomi M

ou! I—_,k < ul ow dud r >
(2.183)

Using Eq. (2.160), all Christoffel symbols in Cartesian coordinates {x'} vanish
because the basis e; does not change in any coordinate x’.
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Oe;
ko _ ok Y& _
I =ele;; = et i 0 (2.184)

2.5.7 Derivatives of Contravariant Bases

Like Eq. (2.158), the derivative of the contravariant basis of the curvilinear
coordinates {u'} with respect to «/ can be defined as

i

(o))
LS

i

g = e (2.185)

[@)]

u’

where I’ jl-k are the second-kind Christoffel symbols in the contravariant bases g*.

In order to compute those Christoffel symbols, some calculating steps are
carried out in the following section.

The derivative of the product between the covariant and contravariant bases
with respect to W can be computed using Eqgs. (2.156), (2.164), and (2.185).

('), = 2eg T8 8= (55:) L

=Iy(¢'g) +Fk(gzg)
:ij+rlk_rkj+rk]
=0

Thus, the relation between the Christoffel symbols of two coordinates results in

= —chj = —FJ’ik (2.187)

Using Eqgs. (2.164) and (2.187), one obtains

ry=-Tj;=-Ty =T} (2.188)

It proves that the Christoffel symbol I J’:k is symmetric with respect to j and k.

Finally, the derivatives of the contravariant basis g’ with respect to ' result
from Eqs. (2.185) and (2.187).

gf; = A,l'kgk = _r]lkgk

S _ (2.189)
= ijg = _r;cjgk
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2.5.8 Derivatives of Covariant Metric Coefficients

The derivatives of the covariant metric coefficient can be derived from the first-
kind Christoffel symbols written as

1
Taj = > (8ijk + 8kii — &ikyj);
i 3 . J ikj)s
1 (2.190)
T = E(gji,k + 8kij — &jki)

The derivative of the covariant metric coefficient results by adding both
Christoffel symbols given in Eq. (2.190).

1 1
Ly + Ty = E(gzj,k + 8iji — 8ikj) + E(gji,k + 8rij — &jk.i)

1 1
=58k + 8k — ik ) T35k + 8iki — ki) (2.191)

= 8ijk

Therefore, the derivatives of the covariant metric coefficient g; with respect to
u* can be expressed in the first-kind Christoffel symbols.

ogy
8ijk = % =T+ T (2.192)

Using Eq. (2.173a), Eq. (2.192) can be rewritten in the second-kind Christoffel
symbols.

8ijk = Vi + Tji

= gl + &l (2.193)
Similar to Eq. (2.192), one can write
giki = Ljix + Tkij (2.194)
Subtracting Eq. (2.192) from Eq. (2.194), one obtains the relation
8ijk — &giki = Ly +lji — Dje — Ty
T, - - (2.195)

= Djni — Ljix
= Diji — Dy
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2.5.9 Covariant Derivatives of Tensors
(a) Contravariant first-order tensors with components T

The contravariant first-order tensor (vector) T can be written in the covariant basis.
T =T'g (2.196)

Using Eq. (2.158), the derivative of the contravariant tensor T with respect to #/
results in
T;=(T'g),=Tig +T'g;

= Tj'gi +7T'T f;-gk

(2.197)

The derivative of the contravariant tensor component T° with respect to i in
Eq. (2.197) can be defined as

. T
I dul

(2.198)

Interchanging i with k in the second term in the RHS of Eq. (2.197), one obtains
TTig = T'Tyg;

ij
. (2.199)
= Tkrjkgi

Substituting Eq. (2.199) into Eq. (2.197), one obtains the derivative of T with
respect to .

T, = T,ijgi + Tkr;kgi
= (T + T g (2.200)

Therefore, the covariant derivative with respect to «/ of the contravariant first-
order tensor (vector) can be written as

T, =T, + T =T, ¢ (2.201)

The covariant derivative of the contravariant first-order tensor component is
transformed in the new barred coordinates {i'}.

(2.202a)
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Proof The first-order tensor component can be written as

._Tjau’

T =T/ — 2.202b
5 ( )

Differentiating 7° with respect to u* and using the chain rule of differentiation,

one obtains
oT! _.ou
- (7=
Ouk < aw) P

Ti : ., (2.202¢)
_ [oT/ou"\ ou' Yy ou' \ ou"
~ \ Ou" ouk ) ou 0w/ ) duk
Using Eq. (2.183), we have
azui =k 6ui . OuP Qu?
k2 pi ST .
owdn/  Mowk Pu dul (2.2024d)

Substituting Eq. (2.202d) into Eq. (2.202c) and interchanging the indices k with
j and j with m, one obtains

or'  (oT/ow™\ ou' | 7 du' ., OuP ou?\ du"
ouk — \ Ou" duk ) du Yok P4ou" du ) duk
thus,
i L P q Al T i AN o i AN
. o o (2.202¢)
T (QwEw | (G or
~ Oun \Ow/ Ouk mm \ Ol duk
The terms in the RHS of Eq. (2.202e) can be written as
oT/ <6ui 6ﬁ") - <6ui 612") i amej ] Ol OU"
—— | +71T"T - = |T! +T"T" -
— — k nm — k N nm ] k
Ou" \ Ou’ Ou O’ Ou [ ‘ } O/ Ou (2.202f)
B Tj| Oou' ou"
~ 7 Qi duk

Using Eq. (2.202b) and interchanging the indices p with k and g with m, the
terms in the LHS of Eq. (2.202e) are rearranged in
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ort .. . [Ou’ ouldw" . ow'\ . (ouP oul "
O (SN i (e S\ (SO
okt pq(@ﬁ”@ﬁlauk> vk*‘< aum> pq(@ﬁ”@ﬁfauk>

i i Ouk ou™ o™\ On/ 2.202
=Ti+T ka(a—a—m>a—m (2202¢)

- {Tfk + T'"F;;m] =7,

Substituting Egs. (2.202f) and (2.202g) into Eq. (2.202e), one obtains
Eq. (2.202a).
ou' 0"
"Ou’s uk
o/ dut

Ti|k:Tj|

(b) Covariant first-order tensors with components 7;

The covariant first-order tensor (vector) T can be written in the contravariant basis.
T =T¢g' (2.203)

Using Eq. (2.189), the partial derivative of the tensor T results in
1= i)” o (2.204)

=T,8 - Til'g

The partial derivative of the covariant tensor component T; with respect to i in
Eq. (2.204) can be defined as

oT;

T = 50

(2.205)

Interchanging i with & in the second term in the RHS of Eq. (2.204), one obtains

T g =Tilg = TiTg (2.206)

ij

Substituting Eq. (2.206) into Eq. (2.204), one obtains the derivative of the first-
order tensor component (vector) T with respect to .

TJ' = Ti‘igi — Tkl“ijg’

= (T — TyTo)g (2.207)
= Ti |jgl
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Therefore, the covariant derivative of the tensor component 7; with respect to /
can be defined as

Tl =Ty~ 3T = T,8 (2.208)

The covariant derivative of the first-order tensor component 7; is transformed in
the new barred coordinates{u'}, similar to Eq. (2.202a), cf. (Nayak 2012; De et al.
2012).

ou' ou’

Teh = Tili g

2.209
P Ve >

W B
(c) Second-order tensors

Second-order tensors can be written in different expressions with covariant and
contravariant bases.

T = Tyg'g = T'gg = Tlg'g = Tigg (2.210)

Similarly, the covariant derivatives with respect to u* of the second-order tensor
components of T can be calculated as, cf. (Klingbeil 1966; Nayak 2012; De et al.
2012)

Tl = Ty — U Ty — U Tim
TV = T) + T, 1" + T}, T™
Te=T)y + T4 7 ~ T4,
T/l =T}, — TiTy + T, 17"

(2.211a)

where Tij,valiv and Tj, are the partial derivatives with respect to u* of the

covariant, contravariant, and mixed tensor components. Note that they are different
to the covariant derivatives of the tensor components, as defined in Eq. (2.211a).
In the coordinate transformation from the curvilinear coordinates {u'} to the
new barred curvilinear coordinates {u”}, the covariant derivative of the covariant
second-order tensor with respect to u#” can be calculated using the chain rule of
differentiation, similar to Eq. (2.202a), cf. (Nayak 2012; De et al. 2012).

- Ou' du’ duk
Tyl = Tijhﬁwﬁ (2.211b)




88 2 Tensor Analysis

where the partial derivatives ﬁ?} are called the shift tensor between two coordinate
systems. This relation in Eq. (2.211b) is the chain rule of the covariant derivatives
of the second-order tensors in the coordinate transformation.

Analogously, the covariant derivatives of the second-order tensors of different
types in the new barred curvilinear coordinates are calculated using the shift

tensors.
- ou’ du’ duk
Ttl, =Tl
_ . Ou* oul ouk
T — i = . 2.211c
|V |k6u’ Ou’ dw’ ( )
Y .| Ou* ou’ dut
T:| =T/| ———.
Bl, ™ " lcoui ouf ow

2.5.10 Riemann—Christoffel Tensor

The Riemann—Christoffel tensor is closely related to the Gaussian curvature of the
surface in differential geometry that will be discussed in Chap. 3.

At first, let us look into the second covariant derivative of an arbitrary first-
order tensor of which the first covariant derivative with respect to i/ has been
derived in Eq. (2.208)

T, =T, — TXT, (2.212)

i

Obviously, the covariant derivative T}l; is a second-order tensor component.

Differentiating T}|; with respect to u¥, the first covariant derivative of the sec-
ond-order tensor (component) Tjl; is the second covariant derivative of an arbitrary
first-order tensor (component) 7;. This second covariant derivative has been given
from Eq. (2.211a) (Klingbeil 1966).

Tili = (Ti]; )k
= (Ti{)) 4 = TaTul; — TTilm (2.213)

= Ti|j,k - F%Tmb — 4 Tilm

Equation (2.212) delivers the relations of

Tilix = Tt = (T T+ T Tons) (2.214a)
F:ZT’” |j = F:Z (TM,]' - F:lann) (2214]3)

ol LElUMN Zyl_i.lbl
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3Tl = T (Tim — T, Tn) (2.214c)

Inserting Eqgs. (2.214a), (2.214b), and (2.214c¢) into Eq. (2.213), one obtains the
second covariant derivative of T;.
Tili = Tiljx = T4 Ty — T Tilm
=Tig— (Fg'l,kTm —+ F;;Tm,k)
— TR (T, — FZ].T,,) — F};'C(T,;m -I%.T,) (2.215)
= 1ijk — F;szm — F:;Tm,k

— YTy + D0 T, — D0 T, + DT T,

where the second partial derivative of T; is symmetric with respect to j and k:

T T,
==L =T, 2.216
= uiduk ~ dukdul Y ( )
Interchanging the indices j with k in Eq. (2.215), one obtains
VT T ik km (2.217)

= Ui Tse + T30 T — Ui Tim + T, T,
Using the symmetry properties given in Eqgs. (2.164) and (2.216), Eq. (2.217)
can be rewritten as

Ti\j = Tije — Ui ;T — T Ty (2218)
= Uil + T U T — U T + TR T
In a flat space, the second covariant derivatives in Eqgs. (2.215) and (2.218) are
identical. However, they are not equal in a curved space because of its surface
curvature. The difference of both second covariant derivatives is proportional to
the curvature tensor. Subtracting Eq. (2.215) from Egq. (2.218), the curvature
tensor results in

Tilj = Tily = (T = T+ Taly = T T,

ij - mk
— pn
=R, T,

(2.219)

The Riemann—Christoffel tensor (Riemann curvature tensor) can be expressed as

n
a rij,k

n  — n
Rijk = Fik,j

SIS ) W i (2.220)




90 2 Tensor Analysis

Straightforwardly, the Riemann—Christoffel tensor is a fourth-order tensor with
respect to the indices of i, j, k, and n. They contain 81 (=34) components in a three-
dimensional space.

In Eq. (2.220), the partial derivatives of the Christoffel symbols are defined by

o O e 0T

i = gsi The=at (2.221)

Furthermore, the covariant Riemann curvature tensor of fourth order is defined
by the Riemann—Christoffel tensor and covariant metric coefficients.

Rlijk = gl"RZ'k <~ R:}k = glanijk (2222)

The Riemann curvature tensor has four following properties using the relation
given in Eq. (2.222) (Nayak 2012):

e First skew symmetry with respect to / and i:
Rijx = —Rijk (2.223)

e Second skew symmetry with respect to j and k:

Riix = —Ruin;
S (2.224)
Rijk = _Rikj
e Block symmetry with respect to two pairs (/, i) and (j, k):
Rijjc = Rjai (2.225)
e Cyclic property in i, j, k:
Ryjx + Rijri + Ruij = 0;
e (2.226)
Ry + Ry + Ry =0

Equation (2.226) is called the Bianchi first identity.
Resulting from these properties, there are six components of Ry in the three-
dimensional space as follows (Klingbeil 1966):

Rk = R3131, R3132, R332, Rin12, Ra1n2, Ran2 (2.227)

In Cartesian coordinates, all Christoffel symbols equal zero according to
Eq. (2.184). Therefore, the Riemann—Christoffel tensor, as given in Eq. (2.220)
must be equal to zero.
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Ry =Tj, — T, +Tpr — 0T

ik,j ij* mk
2.228
i (2.228)
Thus, the Riemann surface curvature tensor can be written as

In this case, Euclidean N-space with orthonormal Cartesian coordinates is
considered as a flat space because the Riemann curvature tensor there equals zero.

In the following section, the Riemann curvature tensor can be calculated from
the Christoffel symbols of first and second kinds.

From Eq. (2.222), the Riemann curvature tensor can be rewritten as

Rpiji = gthf,-k
Using Eq. (2.220), the Riemann curvature tensor results in

Ruyije = gnRij
= ghn(r?k,; - F?},k + r;?cr:lnj — T

ij~ mk
_a ghnr"_’ n a(ghnrf) n my-n my-n
O ) A(gmTy)
==~ V&g == + Tk + TiTmin — T Tk

(2.230a)

Changing the index m into n in both last terms on the RHS of Eq. (2.230a), one
obtains

6 g 0 ghnl—v‘l‘
Ryije = W = Tgmj — (—kl]) + L8k + Ui Ui — T
w Ou ! T (2.2300)
_ a(ghnr‘:lk) a(gh"F:D ™ r ™ r
- ouw  ouk ik(ghn,i - njh) + ij(ghn,k - nkh)

Using Eq. (2.192) for the first-kind Christoffel symbols in Eq. (2.230b), the
Riemann curvature tensor becomes

. T ol
U dud Ouk
=4 (Thin + Tjn = Ty ) + Tp(Titn + T — T ) (2.230c)

Rpjjx = gmR
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2.5.11 Ricci’s Lemma

The covariant derivative of the metric covariant coefficient g;; with respect to u*

results from Eq. (2.211a) changing T}; into g; Then, using Eq. (2.193), one
obtains

il =k~ (gm T + gl )
ik = g — (en T+ gl (2.231a)
= &ijk — &ijk = 0 — (q.e.d.)
Therefore,
_ % n
8iik =7 = 8Ly + 8inL (2.231b)

The Kronecker delta is the product of the covariant and contravariant metric
coefficients:

8] = gug”

The partial derivative with respect to u* of the Kronecker delta (invariant)
equals zero and can be written as
: o _ Ogi ;  0gY
Jo— (g oll) — 20U i 5
O = (eng”) = 578" +8ig 7 -
= g8 + 8ug% (2.2322)
=0
Multiplying Eq. (2.232a) by g™, one obtains
ij Im m _ij
88" gk +07'g) =0
e (2.232b)
= 8r = —8'8"8ik
Interchanging the indices, it results in
mj __ ij Im
8r = —8°8 8lik
o . (2.232¢)
= g% = —8"8"8mi

Using Eq. (2.211a), the covariant derivative of the metric contravariant coef-
ficient g” with respect to u* can be written as
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ij agl] mjl—*i iml"j
8"l =5 8" Do 8" (2.233a)
=85+ 8" Ty + 8",

Substituting Eqgs. (2.231b), (2.232c), and (2.233a), one obtains after inter-
changing the indices

8l = 8%+ (8" T + 8" T
= _gmignjgmn,k + (gmjr;cm + gimrl{m)

= _gmirﬁ;lk - gnjr;'lk + (gmjr;cm + gimrim) (2233b)
= —g"T, — &" i + (€T, + &"TY,.)
=0 — (qed.)

Note that Egs. (2.231a) and (2.233b) are known as Ricci’s lemma.

2.5.12 Derivative of the Jacobian

In the following section, the derivative of the Jacobian J can be calculated and its
result is very useful in the Nabla operator [cf. (Nayak 2012; De et al. 2012)].
The determinant of the metric coefficient tensor is given from Eq. (2.17):

811 812 - 8IN
det(gy) = |20 82 BV o250 (2.234)

8N1 8N2 - 8NN

The contravariant metric coefficient g results from the cofactor G” of the
covariant metric coefficient g; and the determinant g.

i_ G i — gl
g/ = s = GY =gg (2.235)

Differentiating both sides of Eq. (2.234) with respect to «*, one obtains

0g agij ij ..
—=_2GY f =1,2,... 2.2
Bk = Bk GY fori,j=1,2,...,N (2.236)

Prove Eq. (2.236):
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dgnn 0gn2

ogiv 811 812 &IN
og Ouk Qu* Ou 821 82 - 8w
5 | 821 822 8N | 4 +
Quk . . .
u
Ogn1 Ogn2 0gnn
vt 8N2 - 8NN ok ouk Ouk (2.237)
0g11 11 og2 12 Ogn NN
=G —=G G
Ouk + Ouk et uk
Ogii .
= Giforij = 1,2,...,N — (qe.d.)
Ouk
Substituting Eq. (2.235) into Eq. (2.236), it gives
98 _ 08y i
ouk  uk
_ %y (2.238)
ouk S
= gij,kggt]
Inserting Eq. (2.231b) into Eq. (2.238), one obtains
yf = Sikss
= (gmTh +gm1“’~’>gg"j
( e (2.239)
= g(o, T+ T3

= g(rék + F]Jk) = 2gT},

Using the chain rule of differentiation, the Christoffel symbol in Eq. (2.239) can
be expressed in the Jacobian J.

oo 1 og _a(ln\/g)

=gtk T ok

k
Ou (2.240)
o)) 1@
Couk Jouk

Prove that Rj; =0

Using Eq. (2.220) for n = i, the Riemann—Christoffel tensor can be written as

R;ij =T

i myi myi
g — Ui + DDy — T,
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Interchanging j with & in the last term on the RHS of the equation, one obtains

-

. 'l
=T ik

i
R; ik.j

my-i myi
ik + I, — Tl
— i
=Dy = Dk

Using Eq. (2.240), the above Riemann—Christoffel tensor can be rewritten as

R;:jk = F;k,j - F;j,k
_9(InJ) _8(InJ) (2.241)
Ou/ou*  Ou*ou/

=0 — (qed)

2.5.13 Ricci Tensor

Both Ricci and Einstein tensors are very useful mathematical tools in the relativity
theory. Note that tensors using in the relativity fields have been mostly written in
the abstract index notation defined by Penrose (Penrose 2005). This index notation
uses the indices to express the tensor types, rather than their covariant components
in the basis {g'}. The first-kind Ricci tensor results from the index contraction of
k and n for n = k of the Riemann—Christoffel tensor, as given in Eq. (2.220).

— pk
R; =RE,
k k 2.242
_org ary k4 e ( )
auj 6uk it ork ik™ rj

The second-kind Ricci tensor can be defined as
Ri = g"Ry

L jorm - ory (2.243)
_ ik km ki pmyn m yn
=8 < u du™ 1_‘kjl_‘mn + 1_‘knl_‘mj)

Using the Christoffel symbol in Eq. (2.240), we obtain

i =rar = (2.244)
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The first-kind Ricci tensor can be rewritten as

_&(nJ) 3y LY)

k
= Gwow a0 ow T TRly
*(InJ) (0T , o(InJ) .
= _ rk r,rs
owow  \ow Tliaw )T
) - (2.245)
0°(InJ) i O "
= rt ;I
owow 7 (J ok i) T
2 ok
_(nJ) 180Ty) + I
ouou/ J Ouk !
Interchanging i with j in Eq. (2.245), one obtains the relation of
P(nJ) 10(JTE)
Rij=—rt——— 22Tk
I dwidw J Ouk i
_&(ny)  103(T3) LI (2.246)
© Ouidw J Ouk ki

This result indicates that the first-kind Ricci tensor is symmetric with respect to
i and j.

Substituting Eq. (2.244) into Eq. (2.243), the second-kind Ricci tensor results
in

o ((InJ) 16(11“?)
i__ ik G -
Ri= <6ukau1 7 oum FkrIZ,) (2.247)
The Ricci curvature R can be defined as
R=R
ij i (2.248)
=g'Ri = g"Ry

Substituting Eq. (2.246) into Eq. (2.248), the Ricci curvature results in

G () 100TE)
R= gl(@uiﬁuj — e T T (2.249)
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2.5.14 Einstein Tensor

The Einstein tensor is defined by the second-kind Ricci tensor, Kronecker delta,
and the Ricci curvature.

G\ =R — R (2.250a)

The Einstein tensor is a mixed second-order tensor and can be written as
GJ’] = gikaj (2.250Db)

Using the tensor contraction rules, the covariant Einstein tensor results in

1
Gy = guG} = gu(R} — 30R)

1

=Ry 38R (2.251)
1 .

= Rji — 38R

— Gjl

This result proves that the covariant Einstein tensor is symmetric due to the
symmetry of the Ricci tensor.
The Bianchi first identity in Eq. (2.226) gives

Rijjk + Ryji + Ryij = 0;
ko (2.252)
Differentiating covariantly Eq. (2.252) with respect to ™, u*, and u' and then
multiplying it by the covariant metric coefficients g;,, one obtains the Bianchi
second identity, cf. Nayak (2012), De et al. (2012), Lee (2000), and Helgason
(1978).

B R ], = O (2253)
= Ryjua|, +Rijim| A+ Rijmic|, = 0

Due to skew symmetry of the covariant Riemann curvature tensors, as dis-
cussed in Eqgs. (2.223) and (2.224), Eq. (2.253) can be rewritten as

Rijut|,,—Rijmi |, —Rjimi ;= 0 (2.254)

Multiplying Eq. (2.254) by g”’¢’* and using the tensor contraction rules (cf.
Sect. 2.3.5), one obtains
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Riji |, —Rijm |, —Rjime | = 0
g"& Riju|,—&" & Rijmi| ,—&" " Rjim,
= &"Rit,,~&" Rin—8"Rin,
=R|,—R,|—R,|, (1—k)
= R|,—2R},
=0

Ik

Thus,

1
Ry|= 3Rl (2.255)

Using Eq. (2.232a) and the symmetry of the Christoffel symbols, the covariant
derivative of the Kronecker symbol with respect to u* is equal to zero.

| = 0+ Thd) - T30,

km" j
= o)+ (T - 1) (2.256)
=0

Differentiating covariantly the Einstein tensor in Eq. (2.250a) with respect to u*
and using Eq. (2.256), one obtains the covariant derivative

_ (pi_Lsi
K (Rf 25jR) ‘k
1 i
k_§<5j

1gi
1! ,R|
k 25] k

g

k) (2.257)

R+5J’1R
k

_ pi
_Rj

Changing the index i into k in Eq. (2.257) and using Eq. (2.255), the divergence
of the Einstein tensor equals zero.

k k| Lk k| 1

N :R‘ —_5.R’ :R‘ —R|.=0
G]‘k Il 257, e 2|J (2.258)
= Div(G) = V.G = G}“kgj =0 (qed)

This result is very important and has been often used in the general relativity
theories and other relativity fields.
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Chapter 3
Elementary Differential Geometry

3.1 Introduction

We consider an N-dimensional Riemannian manifold M, and let g; be a basis at the
point P,-(ul,. o ) and g; be another basis at the other point Pj(ul,. o ). Note that
each such basis may only exist in a local neighborhood of the respective points and
not necessarily for the whole space. For each such point, we may construct an
embedded affine tangential manifold. The N-tuple of coordinates are invariant in
any chosen basis; however, its components on the coordinates change as the
coordinate system varies. Therefore, the relating components have to be taken into
account by the coordinate transformations.

3.2 Arc Length and Surface in Curvilinear Coordinates

Consider two points P(ul,...,uN ) and Q(ul,...,uN ) of an N-tuple of the coordinates
(ul,...,uN) in the parameterized curve C € R". The coordinates (ul,...,uN) can be
assumed to be a function of the parameter A that varies from P(4;) to Q(4,), as
shown in Fig. 3.1.

The arc length ds between the points P and Q results from

ds\?> dr dr

where the derivative of the vector r(u, v) can be calculated by

dr  d(gu') _ i(@ui>

i di A (3.2)
=gi'(l); Vi=1,2
H. Nguyen-Schifer and J.-P. Schmidt, Tensor Analysis and Elementary 101
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Fig. 3.1 Arc length and
surface on the surface (S)

Substituting Eq. (3.2) into Eq. (3.1), one obtains the arc length PQ.

ds = \/e(git) - (gv) d2 = \/egyit - v d. (3.3)

where ¢ (= 1) is the functional indicator, which ensures that the square root
always exists.

Therefore, the arc length of PQ is given by integrating Eq. (3.3) from the
parameter 1; to the parameter A,.

Ja
5= / Jeggi(2) - v(7) di (3.4)
A

where the covariant metric coefficients g, are defined by

8§ii=8i =8 &
_or or,
S ou v’

u,j=v (3.5)
Thus, the metric coefficient tensor of the parameterized surface S is given in

g 812]

M = (gy) = {
821 822
r,r, r,r, E F
o S R 2
r,r, nr, F G
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The area differential of the tangent plane T at the point P can be calculated by

dA = |du x dv|
= |gidu x gydv| = [g; x g|dudv (3.7)

Using the Lagrange’s identity, Eq. (3.7) becomes

dA = |g; x g,|dudy

=1/g18n — (g12)2 dudv = 4/det(g;;) dudv

= VEG — F?dudv (3.8)
Integrating Eq. (3.8), the area of the surface S results in
ﬂ.z ).2
A= / / VEG — F*dudv (3.9)
S

In the following section, the circumference at the equator and surface area of a
sphere with a radius R are calculated (see Fig. 3.2).

The location vector of a given point P(u(4), v(4)) in the parameterized surface
of the sphere (S) can be written as

(S): x> +y*+2=R*=>

Rsin ¢ cos 0 (3.10)
r(¢,0) = | Rsingsin0 |;u=¢ €[0,n;v=0¢€]0,2n] '
Rcos ¢
The covariant bases can be calculated in
Rcos ¢cos
or .
gu=%= Rcos¢sin0 |;
—Rsin ¢
5 —Rsin ¢ sin 0
r .
& =35~ Rsm<(;‘)>cos@ (3.11)

Thus, the metric coefficient tensor results from Eq. (3.11).

_|en en|_[E F|_[R 0
M_|:g21 g22:|_|:F G:|_|:0 RZSiH2¢:| (312>




104 3 Elementary Differential Geometry

Fig. 3.2 Arc length and

z . ), 6 u, v):
surface of a sphere (S) Rsing (¢ 6)—= (U V)

u=¢g;,v==0

The circumference at the equator is givenatu = ¢ = n/2andv = 0 (1) = A.

/12 22
Ceq = / w/g,]u(/l) . V(/l)d/l = / \/glll:tz + 2glzuv + 822\"2 dA (313)
l] ll

where 1 =0;v = 1.

Therefore,
22 2n
C, = / VEn di :/Rsingdl: 2nR (3.14)
P 0

The surface area of the sphere can be computed according to Eq. (3.9).

lo o 2n ©w

As = / / VEG — F?*dudv = / / VEG — F2d¢ do
VSRSt 0 0
2n w 2n (315>

z//stingbdqﬁd(?:—/chos¢|gd9:4nR2
0 0 0

3.3 Unit Tangent and Normal Vector to Surface

The unit tangent vectors to the parameterized curves u and v at the point P have the
same direction as the covariant bases g; and g,. Both tangent vectors generate
the tangent plane T to the differentiable Riemannian surface (S) at the point P. The
unit normal vector n is perpendicular to the tangent plane 7 at the point P, as
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The unit tangent vector t is defined, as given in Eq. (B.1a).

: 1
t,=g = & :—(a—r.>; Vi=1,2
Ca) /&) \ou'

.1 or\ _
nzgl—@(a), (1=u) (3.16)

eeg- () @
2 =8 = T ava =

The unit normal vector is perpendicular to the unit tangent vectors at the point
P and can be written as

Il
<
~

arxar
_ _ 81 X8 _ du v
n_(t1Xt2)_|g1xg2|_ﬁxg (317)
Ou Ov

Using Eq. (3.8), the unit normal vector can be rewritten as

X
n=(t xtp) = ﬁ
1 2
r, Xr, r, Xr, (3.18)

~ Jdetlg;) VEG— P2

in which the cross product of g; and g, can be calculated by
€ € €3
_l(ary ey ey |, (OF) (O
axe=| (), (&), @), - <6u>i (6\/) o (3.19)
(ar) <6r) <6r)
v/ \ov), \ov/s
where ¢ is the permutation symbol given in Eq. (A.5) in Appendix A.

The unit normal vector to the differentiable spherical surface (S) at the point
P in Fig. 3.2 can be computed from Eq. (3.11).

0

or Rcos ¢ cos0 or —Rsin ¢ sin 0
g = (a—> = | Rcos¢sinf |; g, = <@> = | Rsin¢cosl (3.20)
¢ —Rsin ¢
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Therefore,

€1 () es
g Xg = | Rcos¢pcosf Rcos¢psinf —Rsing
—Rsin¢sinf Rsin¢cos 0 0
R?sin® ¢ cos 0
= | R*sin? ¢sin0
R? sin ¢ cos ¢

(3.21)

Thus, the unit normal vector results from Egs. (3.12), (3.18), and (3.21).

g1 X8 1 R?sin” ¢ cos 0 sin ¢ cos 0
n-—= = " R2 Sin2 ¢ Sirl 0 = Sin ¢ Sin 9 (322)
2
m R?sin ¢ R? sin ¢ cos ¢ cos &

Straightforwardly, the unit normal vector depends on each point P(¢, 0) on the
spherical surface (S) and has a vector length of 1.

3.4 The First Fundamental Form

The first and second fundamental forms of surfaces are two important character-
istics in differential geometry as they are used to measure arc lengths and areas of
surfaces, to identify isometric surfaces, and to find the extrema of surfaces. The
Gaussian and mean curvatures of surfaces are based on both fundamental forms.
Initially, the first fundamental form is examined in the following section.

Figure 3.3 displays the unit tangent vector t to the parameterized curve C at the
point P in the differentiable surface (S). The unit normal vector n to the surface
(S) at the point P is perpendicular to t and (S) at the point P.

Both unit tangent and normal vectors generate a Frenet orthonormal frame
{t, n, (n x t)} in which three unit vectors are orthogonal to each other, as shown
in Fig. 3.3. The curvature vector k to the curve C can be rewritten as a linear
combination of the normal curvature vector k,, and the geodesic curvature vector
k. at the point P in the Frenet frame.

k =k, +k, & xnc = x,n+ k,(n x t)

= K= \/Kk2(2) + Kk2() (3.23)

where
Kk is the curvature of the curve C at P
K, is the normal curvature of the surface (S) at P in the direction t

Ko s the geodesic curvature of the surface (S) at P.
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Fig. 3.3 Normal and
geodesic curvatures of the
surface S

The first fundamental form I of the surface (S) is defined by the arc length on
the curve C in the surface (S).

[=ds*> =dr-dr
or X or . (3.24)
<6ui du ) . <auj du )

The first term in the RHS of Eq. (3.24) can be rewritten in the parameterized
coordinate u‘(A).

or

o du' = g;du’
du' (1)
&1 &

(3.25)

i (2)dA

in which g; is the covariant basis of the curvilinear coordinate u', as shown in
Fig. 3.1.
Inserting Eq. (3.25) into Eq. (3.24), the first fundamental form results in

I=ggii(2)il(7)-d2’?
= g;du‘du’ (3.26)
= gndu2 + 2g1pdudv + gzzdv2

Using Eq. (3.6), the first fundamental form of the surface (S) can be rewritten as
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I = Edu* 4 2Fdudv + Gdv* (3.27a)

Therefore, the arc length ds can be rewritten as

ds = \/Ei + 2Fiv + Gi*d), (3.27b)

where E, F, and G are the covariant metric coefficients of the metric tensor M, as
given in

_|E F| _|ror, rr,
M= () = [F G] - [rvru rvrv] (3:28)

3.5 The Second Fundamental Form

The second fundamental form II is defined as twice of the projection of the arc
length vector dr on the unit normal vector n of the parameterized surface (S) at the
point P, as demonstrated in Fig. 3.3.

M =drn (3.29)

Using the Taylor’s series for a vectorial function with two variables u and v, the
differential of the arc length vector dr(u, v) can be written in the second order.

or or
dr = (@) du + (5> dv

1 /0% o’r o*r
(2= du? +2———dudv + —d? dr’ (3.30)
+2<au2u+ 8u6vuv+6v2v>+0(r)

1
= rudu+rydv+ 5 (rudu? + 2r,dudv + r,,dv?) + O(dr?)

Therefore, the second fundamental form can be computed as
11 ~ 2(r,ndu + r,ndv) + (r,,ndu? + 2r,,ndudv + r,,ndv?) (3.31)
Due to the orthogonality of (r,, r,) and n, one obtains the inner products
rm=rn=0 (3.32)

where the covariant bases of the curvilinear coordinate (i, v) are shown in Fig. 3.1.
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or or
azgu l‘v:a:gz (3.33)

r, =
Substituting Egs. (3.31) and (3.32), the second fundamental form results in

I = rpndu?® + 2r,,ndudv + r,,ndv?

3.34
= Ldu? + 2Mdudv + NdV? (3:34)

in which L, M, and N are the elements of the Hessian tensor (Bar 2001; Chase 2012)

_|L M| _|ruyn r,n
H= (hlj) = |:M N:| = |:l'uvl'l l'wl'l:| (3353)
with
n=(t xty) =2 T XD (3.35b)

- \/det(g,;,-) B \/EG—F2

In the case of the projection equals zero, the second fundamental form II is also
equal to zero. It gives the quadratic equation of du according to Eq. (3.34).

u- + udv + Vo= .
Ldu? + 2Mdudv + Ndv? = 0 3.36

Resolving Eq. (3.36) for du, one obtains the solution

du = <_Mi (LM2 — LN)) dv (3.37)

There are three cases for Eq. (3.37) with L # 0 (Klingbeil 1966; Kiihnel 2013):

(M* — LN) > 0: two different solutions of du.
The surface (S) cuts the tangent plane T with two lines that intersect each other at
the point P (hyperbolic point);

(M? — LN) = 0: two identical solutions of du.
The surface (S) cuts the tangent plane 7 with one line that passes through the
point P (parabolic point);

(M* — LN) < 0: no solution of du.
The surface (S) does not cut the tangent plane T except at the point P (elliptic point).

In another way, the second fundamental form II can be derived by the change
rate of the differential of the arc length ds when the surface (S) moves along the
unit normal vector n with a parameterized variable « according to Chase (2012).

The location vector of the point P can be written in the parameterized variable o.
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R, (u,v,a) = r(u,v) — om(u,v) (3.38)
The second fundamental form II can be calculated at o = O using Eq. (3.27a):

a(ds)| _l@(dsz)l 1 az|

o " 2 dx " 204 *°

19

=330 (Edu? 4 2Fdudv + Gdv?) |,—o (3:39)

10E 10G
= —— |y—odid? + |“_0dudv +=
o 200

II=ds-

| 0L_()dv

in which the first term in the RHS of Eq. (3.39) can be calculated as

E= Ru(ua v, (X) : Ru(“; v, O()
= (r, —an,) - (r, —on,) (3.40)

= n20c2 2r,n,o + rﬁ

Thus,

10E

3 om0 = (nzcx —r,ny) |0 = —1,n, (3.41)

Further calculations deliver the second and third terms in the RHS of
Eq. (3.39):

oF

a |o¢:0 = _(runv + rvnu); (3'42)
10G
2 6<x |oc—0 = —-nn, (343)

Using the orthogonality of r, and n, one obtains

o(r, - n)

5 =ryn+rmn,=0=r,n=-r,mn, (3.44)
u

Similarly, one obtains using the orthogonality of r, and n, and r, and n

o(r,-n) 0(r,-n)

= 0= 2r,n = —(r,n, +r,n,);

Ov Ou (3.45)
o(r, -m)
=0=r,n=—-r,n,
v

Substituting Egs. (3.41)—(3.45) into Eq. (3.39), the second fundamental form IT
can be written as
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10FE OF 10G
== _odu® +—1,_ Z22 0 _ody?
5% la—odu” + A |y—odudv + > 2 [s=odv
= —r,n,du’ — (r,n, + r,n,)dudv — r,n,dv? (3.46)

r, ndu? + 2r,,ndudv + r,,ndv?

= Ldu? + 2Mdudy + Ndv*

where L, M, and N are the components of the Hessian tensor

L M r,n r,n
H= {M N] - [rwn rwn] (3.47)

3.6 Gaussian and Mean Curvatures

The Gaussian and mean curvatures are based on the principal normal curvatures x;
and «; in the directions t; and t, of the surface (S) at a given point P, respectively,
as shown in Fig. 3.4. The unit tangent vectors t; and t, and the unit normal vector
n at the point P generate two principal curvature planes that are perpendicular to
each other. The normal curvature x; of the surface (S) in the principal direction t;
at the point P is defined as the maximum normal curvature in the curvature plane
Py; the normal curvature k, in the principal direction t, is the minimum normal
curvature in the curvature plane P,.

The maximum and minimum normal curvatures x; and k, of the surface (§) at
the point P are the eigenvalues of the corresponding eigenvectors t; and t,
(Bidr 2001; Chase 2012; Kiihnel 2013; Lang 2001). These eigenvalues are given
from the characteristic equation that can be derived from the first and second
fundamental forms in Egs. (3.27a, 3.27b and 3.46).

The Gaussian curvature of the surface (S) at the point P is defined by

K= K1K2 (348)

The mean curvature of the surface (S) at the point P is defined by

H = (1 + 1) (3.49)

The covariant metric tensor related to the first fundamental form can be written as

[ = Edu? + 2Fdudv + Gdv?;

M= (o) = [ o] = [0 (350)

F G r,r, r,r,
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principal curvature planes

tangent plane

unit normal vector

unit tangent vectors

Fig. 3.4 Gaussian and mean curvatures of the surface §

The Hessian tensor related to the second fundamental form can be written as

Il = Ldu® + 2Mdudy + Ndv?;

H = (hy) = [L M} _ [ruun ruvn] (3.51)

M N r,n r,n

The characteristic equation of the principal curvatures results in

(L—xE) (M —xF)

det(H — kM) = ‘ (M — kF) (N — kG)

‘ =0 (3.52)
Therefore,

(L—KE)-(N—«kG)— (M —KkF)*=0%
L , (3.53)
(EG — F*)k* + (EN — 2MF + LG)x + (LN — M?*) =0

The Gaussian curvature results from Eq. (3.53)

LN — M?* _ det(h;)
EG — F?  det(gy)

K=K1K2:

(3.54)
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Note that the Gaussian curvature K at a point in the surface is the product of two
principal curvatures at this point. According to Gauss’s Theorema Egregium
(remarkable theorem) in [Bér ( 2001); Chase (2012); Kiihnel (2013); Lang (2001)],
the Gaussian curvature depends only on the first fundamental form I.

Similarly, the mean curvature results in

(EN — 2MF + LG)

2(EG — F?) (3.53)

H:%(K1+K2):_

The maximum and minimum principal curvatures k; and x, of the surface § at
the point P result from Eqs. (3.54) and (3.55).

{KIZ Kmax = H + VH? — K

(3.56)
K2 = Kmin = H — \/m

In the following section, the Gaussian and mean curvatures of the rotational
paraboloid surface (S) in R® are computed as follows:

S):z=x>+y%
) Y (3.57)
h(t) =+t t>0
The location vector of the curvilinear surface (S) can be written as
h(z) cos @
r(t,h) = | h(t)sing (3.58)
1(t)

The bases of the curvilinear coordinate (¢, ¢) result from Eq. (3.58) in

h(t) cos @ —hsin ¢

or ; or

== h(f)sing |; ry= P hcos @ (3.59)
2hin(r) 4 0

Thus, the covariant metric tensor can be further computed as

M — [r,r, r,rq,] _ {E F}
Iy, Iyl F G

R(1+4r2) 0 ] (3.60)

0 h?
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The unit normal vector can be calculated as

€ € €3
g1 X% ; - ;
n=———=| hcos hsin 2hh
VEG — F? . ? ¢
—hsing hcosgp 0O (3.61)
. —2hh? cos @ 2hcos ¢ '
=———— | —2hk%sin =—— | 2hsin
e T e Ve Tl

The components of the Hessian tensor are calculated by differentiating
Eq. (3.59) with respect to ¢ and ¢.

i _621'_ i;ic?wp L Pr B ;lizsin(p '
tt — o = ! S (/) 3 tp = 6taq) = Cos @ ;
2hh + 2h? 0
—hcos
’r . ¢
00 = 302 —hsin @ (3.62)
¢
0
The Hessian tensor results from Egs. (3.61) and (3.62) in
kAR
oM Ipoh
. 3.63
2 o0 (3:63)
S Vita2\ o n?

Therefore, the Gaussian curvature can be calculated from Egs. (3.60) and
(3.63).

2.
2 21,2
LN—MZZ(m)hh
EG —F?*  2h2(1 + 4h?)
4 4
5= 5 >0
(1+4r2)* (1 +4)

K:K1K2:

(3.64)

In the case of (M2 — LN) < 0, no solution of du exists. Thus, the surface
(S) does not cut the tangent plane T except at the point P that is called the elliptic
point.

Analogously, the mean curvature results from Eqgs. (3.60) and (3.63) in
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L _EN —2MF + LG
H=3a+m0) == g
202> (3.65)
—— ) [1+ (1 +4K°
_ <\/1+4h2> [+ 1+ _2(1+21)
202h2(1 4 4h?) (1 +4r):

in which h® = t.

3.7 Riemann Curvature

The Riemann curvature (also Riemann curvature tensor) is closely related to the
Gaussian curvature of the surface in differential geometry (Bar 2001; Chase 2012;
Klingbeil 1966). At first, let us look into the second covariant derivative of an
arbitrary first-order tensor of which the first covariant derivative with respect to u/
has been derived in Eq. (2.208).

Tl = Ti; — I T (3.66)
Obviously, the covariant derivative Tjl; is a second-order tensor component.
Differentiating T}|; with respect to u¥, the first covariant derivative of the sec-

ond-order tensor (component) T3l; is the second covariant derivative of an arbitrary

first-order tensor (component) 7;. This second covariant derivative has been given

from Eq. (2.211a) (Klingbeil 1966).

Tilie = (Ti];) I«
= (Til;) x — T T i — 0T (3.67)

= Tiljx = TiTnlj = TiTilm

Equation (3.66) delivers the relations of

Tilix = Tije — (U T + T Ti) (3.68a)
TRT,|; = Tp(Toj — ThyTo) (3.68b)
3Tl = T (Tin — T3, T0) (3.68¢)

Inserting Eqs. (3.68a), (3.68b), and (3.68c) into Eq. (3.67), one obtains the
second covariant derivative of T;.
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Til = Ti|jx — T4Tul; — LTl
= Tije — (5T + T T k)

— I (T,j — F"ijn) - F;;’C(T,-ym -1 T, (3.69)
=T jy— F;kTm — F;;'Tka

— 5T, + F;ZFZJ.T” — F}ZTi,m + F};’crg’an

where the second partial derivative of T; is symmetric with respect to j and k:

aZTi aZTZ
W T oo = (3.70)
Interchanging the indices j with k in Eq. (3.69), one obtains
=TT + T3 T T — T T + T3, T

Using the symmetry properties given in Eq. (3.70), Eq. (3.71) can be rewritten
as
Ti v Ti‘jkm_ 1_‘;’Iiijm_ nrg(TmJ m myn (372)

=TTk + Uy U T — Ui T + U3, T

In a flat space, the second covariant derivatives in Egs. (3.69) and (3.72) are
identical. On the contrary, they are not equal in a curved space because of its
surface curvature. The difference of both second covariant derivatives is propor-
tional to the curvature tensor. Subtracting Eq. (3.69) from Eq. (3.72), the curvature
tensor results in

Tilj — Tiliy = (T, — T

ik
j— n
=R, T,

+ T, — 00T

(3.73)

Thus, the Riemann curvature (also Riemann—Christoffel tensor) can be
expressed as

Ry =T

n
=T, — I

i+ Uil — TH (3.74)
It is straightforward that the Riemann—Christoffel tensor is a fourth-order tensor
with respect to the indices of i, j, k, and n. They contain 81(= 3*) components in a
three-dimensional space.
In Eq. (3.74), the partial derivatives of the Christoffel symbols are defined by
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" orvy, 0 ory
i =3 Vi = 3 (3.75)
According to Eq. (2.172), the second-kind Christoffel symbol is given
1
Ty = 5(8ips + &ini — 8ip)8” (3.76)

Therefore, the Riemann curvature tensor in Eq. (3.74) only depends on the
covariant and contravariant metric coefficients of the metric tensor M, as given in
Eq. (3.28).

Furthermore, the covariant Riemann curvature tensor of fourth order is defined
by the Riemann—Christoffel tensor and covariant metric coefficients.

Riji = guRjy < Ry = "R (3.77)

For a differentiable two-dimensional manifold of the curvilinear coordinates
(u,v), the Bianchi first identity gives the relation between the Riemann curvature
tensors R and Gaussian curvature K, cf. Equation (3.117b).

Riji = K - (818 — 8ugji) (3.78)

Equation (3.78) indicates that the Gaussian curvature K of the two-dimensional
surface only depends on the metric coefficients of E, F, and G. Therefore, the
Gaussian curvature is only a function of the first fundamental form I. This result
was proved by Gauss Theorema Egregium (Bar 2001; Kiihnel 2013; Lang 2001;
Danielson 2003).

The Riemann curvature tensor has the following properties:

e First skew symmetry with respect to [/ and i:
Rijje = —Riji (3.79)
e Second skew symmetry with respect to j and k:
Rije = —Ruj;  Rjy = —RY; (3.80)

ikj

e Block symmetry with respect to two pairs (/, i) and (j, k):
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Riijk = Rjui (3.81)

e Cyclic property in i, j, k:

Rijjx + Ryji + Ruyij = 05

Rl + Ry + R =0

(3.82)

Resulting from these properties, there are six components of Ry in the three-
dimensional space as follows (Chase 2012):

Rt = R3131, R3132, R3232, R1212, Ra112, Raz12 (3.83)

In Cartesian coordinates, all second-kind Christoffel symbols equal zero
according to Eq. (2.184). Therefore, the Riemann—Christoffel tensor, as given in
Eq. (3.74), must be equal to zero.

Ry =T}

PSS WS W) S N MY (3.84)

ijt mk =
Therefore, the Riemann curvature tensor in Cartesian coordinates becomes

R = ginRiy = 0 (3.85)

3.8 Gauss-Bonnet Theorem

The Gauss—Bonnet theorem in differential geometry connects the Gaussian and
geodesic curvatures of the surface to the surface topology by means of the Euler’s
characteristic.

Figure 3.5 displays a differentiable Riemannian surface (S) surrounded by a
closed boundary curve I'. The Gaussian curvature vector K is perpendicular to the
manifold surface at the point P lying in the curve C and has the direction of the
unit normal vector n. The geodesic curvature vector K, has the amplitude of the
geodesic curvature K,; its direction of (n x t) is perpendicular to the unit normal
and tangent vectors in the Frenet orthonormal frame.

The Gauss—Bonnet theorem is formulated for a simple closed boundary curve I
(Bér 2001; Chase 2012; Kiihnel 2013).
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Fig. 3.5 Gaussian and K=Kn
geodesic curvatures for a
simple closed curve I'

k, = & (nxt)

/ / K+ ]f kodl = 27 (3.86)
r

The compact curvilinear surface S is triangulated into a finite number of cur-
vilinear triangles. Each triangle contains a point P on the surface. This procedure is
called the surface triangulation where two neighboring curvilinear triangles have
one common vertex and one common edge (see Fig. 3.6).

Therefore, the integral of the geodesic curvature over all triangles on the
compact curvilinear surface S equals zero (Chase 2012).

7{ egdl = 0 (3.87)
I

In the case of a compact triangulated surface, the Gauss—Bonnet theorem can be
written in Euler’s characteristic y of the compact triangulated surface Sy [Bér
(2001); Chase (2012); Fecko (2011)].

/ KdA = 2y(Sy) (3.88)

The Euler’s characteristic of the compact triangulated surface can be defined by
«(St)=V—E+F (3.89)

in which V, E, and F are the number of vertices, edges, and faces of the considered
compact triangulated surface, respectively.

Substituting Egs. (3.8) and (3.89) into Eq. (3.88), the Gauss—Bonnet theorem
can be written for a compact triangulated surface.
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Fig. 3.6 Gaussian and K=Kn
geodesic curvatures for a
compact triangulated surface F (face) V (vertex)

E (edge)

LN — M?
// ———dudv=2n(V—-E+F) (3.90)
s; VEG — F2

3.9 Gauss Derivative Equations

Gauss derivative equations were derived from the second-kind Christoffel symbols
and the basis g5 that denotes the normal unit vector n(= g3) of the curvilinear
surface with the covariant bases (g;, g;) for i, j = 1, 2 at any point P(u, v) in the
surface. Note that all indices i, j, and k in the curvature surface S vary from 1 to 2.

The partial derivatives of the covariant basis g; with respect to «/ can be written
according to Eq. (2.166) as

g, =Tig + g forijk=12 (3.91)
The Christoffel symbols in the normal direction n result from Eq. (2.164).
r?j =n-g;,;,=8 8 (3.92)

Differentiating g; - g3 and using the orthogonality of g; and g3, the partial
derivative of the covariant basis g; with respect to / can be calculated as

(88),=8, 8+88,=0

(3.93)
= 8ij— —g;(g - g3,j) =—(g 'g3,j)gi

Substituting Eq. (3.93) into Eq. (3.92), the Christoffel symbols in the normal
direction n can be expressed as
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r?j =88, = —(gs 'g3)g3,j - 8i
=88 ="N"§g (3.94a)
=hy=h; =15 forij=1,2
Thus,
n = —hyg fori,j=1,2 (3.94b)
where h;; is the symmetric covariant components of the Hessian tensor H, as given
in Eq. (3.104b).

Inserting Eq. (3.94a) into Eq. (3.91), the covariant derivative of the basis g;
with respect to «’ results in

8= Ff;-gk + higs

=T* hm forij k=12 (395)
=Tyg+hm forij k=1,

This equation is called Gauss derivative equations in which the second-kind
Christoffel symbol is defined as

1 ip

5 = 28" (8ip.i + 8pij — i) (3.96)

3.10 Weingarten’s Equations

The Weingarten’s equations deal with the derivatives of the normal unit vector
n (= g3) of the surface at the point P(u, v) in the curvilinear coordinates {u'}.
The covariant derivative of the normal unit vector n results from Eq. (3.91).
n =gy, =g + 138 forik=1,2 (3.97)
Differentiating g3 - g3 = 1 with respect to ', one obtains
(83-83), =28 8,=0=8;-8,=0 (3.98)
Using Eqgs. (3.92) and (3.98), one obtains
=g g, =>T3=88,=0 fori=12 (3.99)

Inserting Eq. (3.99) into Eq. (3.97) and using Eq. (3.94b), it gives
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n; = Tig, = —hug' = —(hug")g; = —hlg;
N (3.100)

:wzni:—h{gj fori,j=1,2

The mixed components /2 are calculated from the Hessian tensor H and metric
tensor M, as shown in Eq. (3.105).

(h]) = (hug") = HM™! (3.101)

Using Eq. (3.101) for i, j = u, v, the Weingarten’s equations (3.100) can be

written as
0o FM — LG _— FL— EM .
“T\EG-F2)" EG—F2 )"

Lo (FM—LG) or (FL—EM) or (3102)
ou EG—F? ) Qu EG—F? ) 0v
- <FN—GM>r N (FM—EN)r
v EG-F2 " EG—F2 )" (3.103)
Lo <FN—GM>@+ (FM—EN)@
v EG —F? /] ou EG—F? ) 0v

where the covariant metric and Hessian tensors result from the coefficients of the
first and second fundamental forms I and II.

E F r,r, r,r,
M= (&) = F G| |rr. nr

(3.104a)
SM = (¢) = 1 G -F
“¥)TEG-FP|-F E
_|L M| |r,n r,n
woi =5 M -[mm ]
Therefore,
_ ; -1 [(FM -LG) (FL-EM)
1y —
HM = (h) = g6 — [(FN—GM) (FM — EN) (3.105)
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3.11 Gauss—Codazzi Equations

The Gauss—Codazzi equations are based on the Gauss derivative and Weingarten’s
equations. The Gauss derivative equation (3.95) can be written as

8ij = lﬂf;'gk + l"f’,-n

=T* K;n forij k=12 (3.106)
- ng+ l]n OI'l,], - L

in which the symmetric covariant components K;; (= h;;) of the surface curvature
tensor K are given in Eq. (3.94a).

I =K; e K(=H)
=K; = rs

Jt

(3.107)

The covariant derivative of g; with respect to i’ results from Eq. (3.106).

g |j =8~ ri‘cjgk

(3.108)
=Kmn forij=1,2

The Weingarten’s equation (3.100) can also be written in the mixed compo-
nents of the surface curvature tensor K.

n =g, =—Klg forij=1.22 (3.109)

in which the mixed components of the surface curvature tensor K are defined
according to Eq. (3.101) as

K/ = Kug" € KM~ fori,j,k=1,2 (3.110)

Differentiating Eq. (3.108) with respect to u* and using Eq. (3.109), the
covariant second derivatives of the basis g; can be calculated as

g |jk = K,-jykn + Kijl’lk = Kij7kn — Kin,lcgl (3111)

~ Similarly, the covariant second derivatives of the basis g; with respect to u* and
o result from interchanging k with j in Eq. (3.111).

gi‘kj = K,'kJ'Il + Kikllj = K,'kJ'Il - Kikl{;gl (3112)

The Riemann curvature tensor R results from the difference of the covariant
second derivatives of Eqs. (3.111) and (3.112) according to Eq. (3.73).
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g ‘jk - gi|kj = Rfjkgl

(3.113)
= (Kijx — Kirj)m + (KikK} - KinIlc)gl

Multiplying Eq. (3.113) by the normal unit vector n and using the orthogonality
between g; and n, one obtains

(Kijx — Kixj)n-n + (KikK; — K;K)g -n = Rfjkgl n
= (Kij,k — Kik,j) -1+ (Kikl(; — KUKIlc) 0= jok -0
Thus,
Kij,k_Kik,j:O fori,j,k:1,2 (3114)

Equation (3.114) is called the Codazzi’s equation.
Multiplying both sides of Eq. (3.113) by g,,, using the Codazzi’s equation, and
employing the tensor contraction rules, one obtains
Rﬁjkgl‘gm = (KikK} - Kin]lc)gl “8m
= Ri8im = (KuK]" — KiK}")gim

Thus, the Riemann curvature tensors can be calculated as
Riji = KiKijj — KijKiy (3.115)

Equation (3.115) is called the Gauss equation. As a result, both Egs. (3.114)
and (3.115) are defined as the Gauss—Codazzi equations.

The Codazzi’s equation (3.114) gives only two independent non-trivial terms
(Klingbeil 1966; Danielson 2003):

Kijx = Kicj = (Kiip = Kio1; Koip = K1) (3.116)

On the contrary, the Gauss equation delivers only one independent non-trivial
term (Klingbeil 1966; Danielson 2003):

Rizin = K1k — K7 (3.117a)
Therefore, the Gaussian or total curvature K in Eq. (3.54) can be rewritten as

K = det (K)) = (K|K? — KIK?)
_ KuKn—Kj, Riop (3.117b)

811822 _g%z 8

in which
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K’,: is the mixed components of the mixed tensor KM_I, as shown in
Eq. (3.105)
K; is the covariant components of the surface curvature tensor K

Ri>1» is the covariant component of the Riemann curvature tensor
g is the determinant of the covariant metric tensor (g;)

3.12 Lie Derivatives

The Lie derivatives (pronouncing/Li:/) named after the Norwegian mathematician
Sophus Lie (1842-1899) are very useful geometrical tools in Lie algebras and Lie
groups in differential geometry of curved manifolds. The Lie derivatives are based
on vector fields that are tangent to the set of curves (also called congruence) of the
curved manifold.

3.12.1 Vector Fields in Riemannian Manifold

The vector field tangent to the curve (A) parameterized by the geodesic parameter
o can be written in the coordinate i of the N-dimensional manifold M, as
displayed in Fig. 3.7. Note that all formulas in this section are expressed in the
Einstein summation convention (cf. Sect. 2.2.2).

o do 6ui (3118)

where X' is the vector component in the coordinate u'.
Similarly, the vector field tangent to the curve (B) parameterized by another
geodesic parameter f§ can be written in the coordinate /.

(3.119)
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Fig. 3.7 Vector fields in the
curved manifold M

3.12.2 Lie Bracket

Let X and Y be the vector fields of the congruence in the curved manifold M, and
fis a mapping function of the coordinate u' in the curve. The commutator of a
vector field is called the Lie bracket and can be defined by

X, Y] =X(Y()) - YX()) (3.120)

The first mapping operator on the RHS of Eq. (3.120) can be calculated using
the chain rule of differentiation.

) 2
=X/ — L
X(Y(f) =X/ 5 (Y aw‘)
i 2
VLS (NS

—_ X/ jyi_Y
Oou/ out Y Ou'ou’

(3.121)

Analogously, the second mapping operator on the RHS of Eq. (3.120) results in

Y(X(f)) = Yj% (X" %)

0X' 9 o
= Y]—.—. XIY] N -
Ou’/ ou' + Ou'ou/

(3.122)

Interchanging the indices i with j in the second term on the RHS of Eq. (3.122),
one obtains

0X' 0 o
Y(X(F) =Y 5o+ XY (3.123)

Subtracting Eq. (3.121) from Eq. (3.123), the Lie bracket is given.
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“ u/ ou (3.124)

E[X,Y]i§ fori=1,2,...,N
ul

Thus, the component i in the coordinate u’ of the Lie bracket is defined by

) ) '
i —yiZ= fori,j=1,2,...,N (3.125)

X, ¥I=x du/ ou’

The vectors X and Y commute if its Lie bracket equals zero.
X,Y]=0 (3.126)

According to Eq. (3.125), the Lie bracket is skew symmetric (antisymmetric).

X,Y] = —[Y,X]
X! oY\ 0 (3.127)
= — f ) —
(Y ou’ X auj) Ou'

The Lie bracket (commutator) of the vector field (X, Y) can be expressed in

another way as
.0 . 0 .0 0
XY =X]—. Yl—. —YJ—. Xl—‘
X, Y] 6141( 614’) 6u1< 6u‘>

3.128
S Tdp do
Therefore, the Lie bracket of the vector field can be written as
d d
XY =|—,—
%)= (30 .
_dd d d '
~ dadf  dfda

The Lie bracket of a vector field is generally not equal to zero in a curved
manifold due to space torsions and Riemann surface curvatures that will be dis-
cussed later in Sect. 3.12.5.

The Lie bracket has some cyclic permutation properties of the vector field
(X, Y, and Z) in the curved manifold M.
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[X,[Y,Z]] = XYZ — XZY — YZX + ZYX
Y, [Z,X]] = YZX — YXZ — ZXY + XZY (3.130)
[Z,[X,Y]] = ZXY — ZYZ — XYZ + YXZ

The Jacobi identity written in the Lie brackets results from substituting the
properties of Eq. (3.130):

X, [Y,Z]] + Y, [Z,X]] + [Z,[X, Y]] = 0 (3.131)

3.12.3 Lie Dragging

3.12.3.1 Lie Dragging of a Function

Let f be a mapping function f(P;;) at the point P;; by a geodesic parameter
distance Ao into the image function f(P;,) at the point P, called the image of
f(P11) on the same curve (A;) in the manifold M (see Fig. 3.7).

If the mapping image f(P;,) at the point P, equals the original function f(P;)
at the point Py, the function f is called invariant under the mapping. Furthermore,
the mapping function f can be defined as Lie dragged if the images of the function f
are invariant for every geodesic parameter distance Ao along any congruence in
the manifold M.

d)
d—]; = 0 & f is Lie dragged. (3.132)

3.12.3.2 Lie Dragging of a Vector Field

Let X and Y be the vector fields in the curved manifold M, as shown in Fig. 3.8.
The congruence consists of o and f§ curves with the coordinates u' and . The
tangent vector X to the curve (A;) at the point P, is dragged to the curve (A,) at
the point P,; by a geodesic parameter distance Ap.

The image vector X* of the original vector X is dragged by Af from (A;) to
(A,) and tangent to the curve (A,) at the point P,;. Generally, both tangent vectors
X and X* are different to each other under the Lie dragging by Af. However, if
they are equal for every geodesic parameter distance Af, the Lie dragging is
invariant. In this case, the vector field is called Lie dragged in the manifold
M (Penrose 2005; Schutz 1980).

Similarly, the tangent vector Y to the curve (B;) at the point Py, is dragged to
the image vector Y* tangent to the curve (B,) at the point P, by a geodesic
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Fig. 3.8 Lie dragging a .- p-curves (u))
vector field in a curved . .
manifold M

parameter distance Aco. Thus, the vector field of X and Y along the congruence is
generated in the manifold M. The vector field is defined as Lie dragged if its Lie
bracket or the commutator given in Eq. (3.129) equals zero.

d d dd d d
xy=|2 &|_2¢ <d9d_
X, Y] [da’dﬁ] dodf  dfda (3.133)
,dd_dd '
dadf  dfda

In this case, the vector field is commute under the Lie-dragged procedure in the
manifold M. In general, the Lie bracket of a vector field is not always equal to zero
due to space torsions besides the Riemann surface curvature in the curved space.

3.12.4 Lie Derivatives

The Lie derivatives of a function with respect to the vector field X are defined by
the change rate of the function f between two different points P;; and Py, in the
same curve under the Lie dragging by a geodesic parameter distance Ao.

S + Aa) —f(o) |

£/ = im,

A
df (u) du’ of
= =—_" 3.134
do |, doOu'|, ( )
— Xi a_f

T o
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Thus, the Lie derivative of a function f with respect to the vector field X can be
simply expressed in

i a _
£xf = <X w)f =Xf (3.135)

Analogously, the Lie derivative of a vector Y with respect to the vector field
X results from the Lie bracket (Schutz 1980; Fecko 2011).

£xY = X, Y] = [X, Y] aa,
" (3.136)
= (£xY)'=—~ fori=1,2,...,N

ou!

According to Eq. (3.125), the component i in the coordinate u' of the Lie
derivative of the vector Y with respect to the vector field X can be calculated as

(ExY) = X, Y]
0 0\,
(Xja J>Y (Yja ])X (3.137)
d i d i s
_EY_d_ﬂX fOI'l—l,z,...,N

The Lie derivative of a vector field is skew symmetric because of the skew
symmetry of the Lie bracket, as shown in Eq. (3.127).

£xY = —£yX (3.138)

In the following section, the properties of the Lie derivatives are proved.

3.12.4.1 Lie Derivative of a Function Product

£x(fg) = (£xf)g +/(£xg) (3.139)

Proof

&x(fe) = X(f) = X' (fe)

(Do)

= (£xf)g +f(£xg) (qe
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3.12.4.2 Lie Derivative of a Tensor Product

£x(T®S) = (ExT) ® S+ T ® (£xS) (3.140)
Proof

G
£x(T®S)=X(T®S) :X’W(T®S)

= X"a—T. RS+T® Xia_s_
out ou!

=(£T)®S+T® (£xS) (qe.d.)

3.12.4.3 Lie Derivative of a One-Form Field Differential

£x(do) = d(£xo) (3.141)

Proof The differential of a one-form field w consists of scalar functions and vector

fields. It can be written in the coordinate i/ using the Einstein’s summation
convention.

0w

do = —
“’am

duw/ forj=1,2,....N (3.142)

The term on the LHS of Eq. (3.141) can be calculated using Eq. (3.142).

£x (da)) =£x (% duj)

within

£x(du’) = d(£xu’) = dX’
_ox/
T ou

du' fori=1,2,....N

Interchanging i with j in the last term of the second line on the RHS of
Eq. (3.143), one obtains the term on the LHS of Eq. (3.141).
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- ()
oo B )
ai <a§j)d A (SX d”j)
2 i
= (¥ s i)

Next, the term on the RHS of Eq. (3.141) is computed using the chain rule of
differentiation.

(3.143)

d(£xw) = dXw) = d(X’%w)

(8 d
_ de<a‘°> +a—°fdx (3.144)

, 0w dwdX’
- <X owow | ow au1>d"

Comparing Egs. (3.143) to (3.144), it is proved that

£X (d(l)) = d(£xw)

This equation is called the Cartan’s formula in the special case.
The Cartan’s formula for a one-form field is given by

£xo = ixdow + d(ixw)

The notation ixw is called the interior product of @ with respect to the vector
field X and is defined by

ixw = X’i(i)w =0 forallw
Oul

= £x0 = Xw = ixdw
Changing o into dw in the Cartan’s formula, Eq. (3.141) is proved due to
d(dw) =0

=0+d(£xw)
=d(£xw) (q.e.d.)
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3.12.4.4 Lie Derivative of a One-Form Field and Vector Product
£x(0Y) — (£x0)Y = 0[X, Y] (3.145)

Proof
£x(0Y) = X(0Y)
; 0
;0w . 0Y
= (Xo)Y + XY)o

Therefore,

£x(0Y) — (£x0)Y = (£xY)w
=0X,Y] (qe.d.)

3.12.4.5 Lie Derivative of a One-Form Field

660,- aX]

(Exo); =X/ 7 5+ wj7 5

(3.146)

Proof From Eqgs. (3.137 and 3.145), one obtains by interchanging the index i with
J-

(£XCO)iYi = £X(G)iYi) — (l)i(£xY)i
_ i) wi<Xja_Y_ YjaX>

ou/ ou’ ou’
. oY! . 0w; oY! oX!
=X — + XY — — 0, X —— + oY/ —
@ ou/ + ou/ @i ou/ to ou/
0w oX!
_ Jjyi 1 X ]— . B
=X’y auj—i-wlY o (i<}J)
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Therefore,

: aw,- 6X]

Multiplying Eq. (3.146) by du’, one obtains interchanging i with j.

(£xw),du’ = X/ 2(;); du' + wj%lujdui (i—)) (3.147)
= (Xw;)du' + w;dX’
The term on the LHS of Eq. (3.147) can be written as
(Exw),du’ = £xo = £x(wdu’) (3.148)
where the one-form o can be defined by
o = w;du’ (3.149)

Thus, one obtains the property of the Lie derivative of a one-form field.

£xo = (Xw;)du' + w;dX’ (qe.d.) (3.150)

3.12.5 Torsion and Curvature in a Distorted and Curved
Manifold

The normal vector field N perpendicular to the surface of the manifold M is
dragged in two different paths from the same point Py, via P,; to Q in the one path
and via Py, to S in the other path, as shown in Fig. 3.9. Due to the effect of space
torsions and surface curvatures, the vector field N does not close the connection
loop at the path ends Q and S of the dragging paths. The gap of the path ends is
O(£?) in a distorted and curved manifold and is reduced to the order of O(&*) in an
only curved manifold (Penrose 2005).

The Lie derivative of the vector Y with respect to the vector field X is induced
by the space torsion of the distorted manifold. As a consequence, the torsion tensor
¢’[X, Y] generates the open connection gap QR (see Fig. 3.9). The Riemann
surface curvature is to blame for the other open connection gap RS on the order of
0(83) in the curved manifold.

Therefore, the connection loop is always closed in a torsion-free and flat space.
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Fig. 3.9 Connection loop of & £2(:gz[X,Y] : torsion tensor
vector fields in a distorted and :

,
curved manifold M ! ,SZRW: curvature tensor

[Y,X] — [X,Y] = 0 & £4X = £KY (3.151)

The curvature equation of a distorted and curved manifold can be written by
means of the Lie formulations, Riemann curvature tensors, and covariant metric
coefficients (Penrose 2005).

[Y,X] - [X,Y] = £[X, Y] + &Ry

3.152
S EyX — £5Y = 82£XY + SZgI"RZ'k ( )

where Ry is the Riemann curvature tensors of the curved manifold M.

3.12.6 Killing Vector Fields

The Killing vector field K is defined as a vector field in a curved manifold in which
the Lie derivative of the metric tensor g with respect to the vector field K along the
congruence equals zero.

£kg=0 (3.153)

Equation (3.153) shows that the metric tensor g is invariant in the curved
manifold with respect to the Killing vector field K.

The covariant tensor components of the Lie derivative of the metric tensor with
respect to the Killing vector field K can be expressed in (Schutz 1980).

agijJr 0K* N oK*
duk T ui T8N By (3.154)

(£k g)ij =K
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Equation (3.154) can be written in one-dimensional coordinate u* with respect
to the Killing vector field K.
_ 98 _

(fxg)y=7¢=0 (3.155)

Therefore, if the covariant metric coefficient is independent of any coordinate,
the basis of the coordinate is a Killing vector.

As an example for the Killing vector field, the covariant metric coefficients of
the spherical coordinates (r, ¢, 0) are given in

B =8 & =55~
o 0
g¢¢:g¢-g¢5@-@:r2 (3.156)

0 0 .
g%:gg-gQE@-@:rzng(p

Equation (3.156) shows that the metric coefficients are independent of the
coordinates (r, ¢, 0). Hence, the basis vectors g,, g4, and g are the Killing vectors.

3.13 Invariant Time Derivatives on Moving Surfaces

In the following section, the invariant time derivatives of tensors are applied to a
surface S(¢) moving with a velocity vector V in the ambient coordinate system. For
this case, the invariant time derivative of an invariant field 7(z, S) parameterized by
the time ¢ and moving surface S can be calculated in the surface coordinate.
Generally, two coordinates of the unchanged ambient coordinate x’ with the
covariant basis g; and the moving surface coordinate u* with the covariant basis g,
are used in the moving surface S(¢), as shown in Fig. 3.10.

The surface S at the time t moves to the new surface position S at the time
t + Ar at which the invariant field T(t, S) at the time 7 is changed into T(t + Az, )
in a very short time interval At. The time-dependent surface S moves with a
coordinate velocity V' in the ambient coordinate x’ (Grinfeld 2013).

The ambient coordinate velocity of the moving surface S(7) in the coordinate x’
can be defined by

_ xi(1,9)

ot

(3.157)

The tangential coordinate velocity V* results from projecting the ambient coor-
dinate velocity V' onto the surface along the surface coordinate u*. To calculate the
tangential coordinate velocity, the surface velocity vector V can be formulated in
both ambient and surface coordinates using the chain rule of differentiation.
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Fig. 3.10 Invariant fields on
a moving surface S(f)

V= Vagoz
xl
orowtou (3.158)
T e
= (V'x%)g,

where the derivative x7 is called the shift tensor between the ambient and surface
coordinates.

Thus, the tangential coordinate velocity V* results from the ambient coordinate
velocity and shift tensor.

Vi= Vi = Vi (3.159)
Analogously, one obtains
i o axi o i
Vi=Vv i Vix, (3.159Db)

3.13.1 Invariant Time Derivative of an Invariant Field

The invariant time derivative of an invariant field 7(z, S) can be defined as the time
change rate of the invariant field itself and its change rates along the surface
coordinates between the old and new surface positions (Grinfeld 2013).
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—V'V,T (3.160)

At first, the covariant surface derivative of a first-order tensor T can be written
as

oT _ 3(T'g)
O(T = =
v ou® ou®
or! - 0g;
= o i 5t 3.161a
ou* g+ T ou ( )
or' om0

T avow

Using Eq. (2.158), the covariant derivative of the basis g; results in

% _ iy (3.161b)

Inserting Eq. (3.161b) into Eq. (3.161a), one obtains

oT' o’

_ k
V,T = st o I T'g,

oTk o’ (3.161¢)
B (au“ +6u°‘ iT)gk
= (Voch)gk

Thus,

Our ~ Ou ¥ (3.161d)

The covariant surface derivative of a contravariant first-order tensor results in
using Eq. (3.161d) and the chain rule of coordinates.
i i oT"  ox’ i
V. T'=T, =55 T ap LT
_oT" ox/ Lo ox/ i
O 0w dux " (3.161¢)

o fort
~ o <6x1 T )

= x{aTi|jE x{anTi
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Analogously, the covariant surface derivative of a mixed second-order tensor
using Eq. (2.211a) and the chain rule of coordinates results in

i i aTl ax i n i
VI =Tj| = a;+aa(rk ~ Ty
6T’
~at a7 T
e (3.161f)
~ our (a s kaTm rijrlz)
— &7 = AT
) k )

The ambient coordinate is dependent on time and the surface coordinate of the
moving surface S. Thus, the invariant field 7 can be expressed as

T(1,8) = T(t, x(t,5)) (3.162)

Using the Taylor series and chain rule, the partial time derivative of 7 with two
independent variables of # and S can be calculated as

oT(t,S) _ OT(t,x) N T (1,x) Ox'(t,S)

ot ot o ot
3.163
_TD) gy 1

ot !
because

oT(t,x) . (1, S)
T = —; ' = 3.164
v oxt v ot ( )

The invariant time derivative in Eq. (3.160) can be rewritten using
Eqgs. (3.161e) and (3.163).

VT = (a v
é Yy vivr - Vi VT
) (3.165a)
== HVVT = VX, ViT
_ o1 + (VI =X VIV, T
ot - ’

The second term on the RHS in Eq. (3.165a) can be further calculated using
Eq. (3.159a).
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. . O four .
Viex v =vie 2 (iw>

Ou* \ Ox/
vy (3.165b)
=V/ (51’ — xfax‘:]‘.)

The useful relation between the contra- and covariant normal vector compo-
nents and shift tensors of coordinates is derived by (Grinfeld 2013)

N'N; +x!,x% = 0; (3.165¢)
in which &} is the Kronecker delta.

Substituting Eq. (3.165c¢) into Eq. (3.165b), the invariant time derivative of T
given in Eq. (3.165a) can be rewritten as

VT = aTg,x) + (VIN,N'V.T
! (3.165d)

= aTgt, ) | pNT

where P is the normal velocity at a given point on the moving surface S, as
displayed in Fig. 3.10. In fact, the normal velocity is the projection of the ambient
coordinate velocity V' on the surface normal N,.

P=V'N; =
P=PN (3.165¢)
= (V'N)N = V'N\N’g;

3.13.2 Invariant Time Derivative of Tensors

Analogously, the invariant time derivative of tensors can be derived from the
invariant field. The contravariant tensor can be written in the covariant basis g;.

T="Tlg (3.166)

The invariant time derivative of the tensor T can be expressed on the moving
surface S according to Eq. (3.160) (Grinfeld 2013).

oT(z,S)
ot

VT = - V*V,T (3.167)
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Substituting Eq. (3.166) into Eq. (3.167), one obtains

VT = @ — V*V,(T'g;)
aTj " (3.168)
l gl o 1
=5 &t 5 -V (V,T)g;

Using Eqs. (2.158) and (3.157), the time derivative of the coordinate basis g; in
Eq. (3.168) can be calculated.
og; _ Og; ov/ %

&= == =&,
k kysj
=T =g = [jVie,

Therefore, the invariant time derivative of the tensor T can be rewritten as

. oT ki i
VI =g+ VTS~ V(YT g
orT*
- (E +ViITkT — V“VaT") g G170
=VTtg,

The invariant time derivative of a contravariant tensor 7' is given from

Eq. (3.170).
7 i aT’ JTi Tk o i
VT = o + VT, T = V'V, T (3.171)
Similarly, one obtains the invariant time derivative of a covariant tensor T,
. oT; "
VTI-=§—V/F T, — V*V,T; (3.172)

The invariant time derivative of a mixed tensor T; can be derived in

R .
" — VLT, — V'V, T

oo
VT; = a—] +V Fl
ST (3.173)
at] + V(T I — TRT)) — VIV, T

The general invariant time derivative of a mixed fourth-order tensor can be

derived in Grinfeld (2013).
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o

JjB i i qo q i
L~ VIV, T - VIT T~ VITT

Lo .5
+ 5T — 1T

i# (3.174)

where the time derivative of the Christoffel symbols for a moving surface is
defined as

(% = VyV* — PR} (3.175)

in which P is the normal velocity in Eq. (3.165¢) and Ry is the mean curvature of
the moving surface.
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Chapter 4
Applications of Tensors and Differential
Geometry

4.1 Nabla Operator in Curvilinear Coordinates

Nabla operator is a linear map of an arbitrary tensor into an image tensor in
N-dimensional curvilinear coordinates. The Nabla operator can be usually defined in
N-dimensional Cartesian coordinates {x'} using Einstein summation convention as

\Y

. 0
e’& for i=1,2,...,N (4.1)

According to Eq. (2.12), the relation between the bases of Cartesian and general
curvilinear coordinates can be written as

or Or ox/ Ox/
8o "o Yow (4.2)
Multiplying Eq. (4.2) by g'¢/, one obtains the basis of Cartesian coordinates
expressed in the curvilinear coordinate basis.

axj

J—
¢ L ou!

(4.3)

Using the chain rule in the coordinate transformation, the Nabla operator in
the general curvilinear coordinates {ui } results from Eq. (4.3) (Klingbeil 1966;

Simmonds 1982).
0 ouw x /0 ou
V= (aw a;a) 2 5 (@5)
_ g O (o x 0 (o (4.4)
auJ Ouk ox' — £ Ou/ \ Ouk
0 ,.i 0
— ot L (5)) = g
=8 Qul (5 ) a a0k
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Thus, the Nabla operator can be written in the curvilinear coordinates {u'}
using Einstein summation convention.

Vzgiizgivi for i=1,2,...,N (4.5)
ou'
4.2 Gradient, Divergence, and Curl

Let ¢ be a velocity potential that exists only in a vortex-free flow; it can be defined
as

¢ = / vdx (4.6)
Differentiating Eq. (4.6) with respect to x, the velocity component results in
09
=— 4.7
B (4.7)

The velocity vector v can be written in the general curvilinear coordinates {u'}
with the contravariant basis.

. 00
V= vigl = —d)gl (48)

4.2.1 Gradient of an Invariant

The gradient of an invariant ¢ (zero-order tensor) can be defined by

0 . .
Grad ¢ = V¢ = gaqs,— g =vg =V

=Vp=v= <a¢g +%g2+a—¢;g>

(4.9)

It is straightforward that the gradient of an invariant is a vector (first-order tensor).
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4.2.2 Gradient of a Vector

The gradient of a contravariant vector v can be calculated using the covariant
derivative of the covariant basis g;, as given in Eq. (2.158).

d ;00g))
Grad v = Vv = (g 6u>( Vg) =g a—ulj

=g (V,];'gj + ngj,i) - ( VBt vang)g (4.10)
= (5 +v/T} e
= vk‘igkgi

Analogously, the gradient of a covariant vector v can be written using the
covariant derivative of the contravariant basis g’ in Eq. (2.189).

0(v;g/
Grad v = Vv = gng)
ou
¢ (g +vgl) = (g —vTig")e (4.11)
= (ki — erzjk)gkgi

= Vk|igkgi

4.2.3 Divergence of a Vector

Let v be a vector in the curvilinear coordinates {u'}; it can be written in the
covariant basis g;.

v=1lg (4.12)

The divergence of v can be defined by

. C 0(vie.
Divv:V-v:<g’ii>-v:g’- (vlgj)
Ou Ou (4.13)

—g - (Vg +vig,) =g Vv
Using Eq. (2.158), the covariant derivative of the covariant basis g; results in

gj,i = rzgk rugk (414)

Substituting Eq. (4.14) into Eq. (4.13), one obtains the divergence of v.
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Vv=g- (vf;gj + vjl"g.gk)
= gi : (Vﬁ'gk + vjl“zgk) = gi : (Vk, + vaZ;) Sk
- (vkl + vjl"fj>gi - g = Vo)

(. T AN
= (v7i+v Fij> =

(4.15a)

According to Eq. (2.240), the second-kind Christoffel symbol can be rewritten as

. 1 d(nJ)
VT Jouw T ow

(4.15b)

Substituting Eq. (4.15b) into Eq. (4.15a), the divergence of v can be expressed in
the Jacobian J.

1o ol 1oWy) 1,
Vv (g ) =5 =), (4.13¢)

Analogously, the covariant vector v can be written in the contravariant basis g’.
V= ngj (416)

The divergence of v can be derived using the contraction law and covariant
derivative of the basis g’ in Eq. (2.189).

Veov=g- (a;,- ) g (Vj,ig’ +ng,]i)
=g (g —vTg")
= (i —vTh)e - ¢
— i k ik _ .m ik
=Vk|ig - g —Vk|ig =V |igmkg

=i, =v'|;

(4.17)

Some useful abbreviations are listed as follows:
e Divergence of the contravariant vector v:
V-v=g V=g V,(g)

= vtV =V (4.182)

C1aWv) 1,
=7 ow s
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e Divergence of the covariant vector v:

V-v=g Viv=g-Vi(yg)

= (i = vTh)e" = wilig" (1
e Covariant derivative of the contravariant vector component:
k| — —_—e Tk
% |i=v,i+v1r‘ij:$+v’rij (4.19a)
e Covariant derivative of the covariant vector component:
. M .
vili = (vii —viTY) = P vy, (4.19b)
e Covariant derivative of the contravariant vector v with respect to u':
Viv= (vkl + vjl"g.) g = V|ig (4.20a)
e Covariant derivative of the covariant vector v with respect to u':
Viv = (vi —viT}) g = viligh = v"igmeg". (4.20b)

4.2.4 Divergence of a Second-Order Tensor

Let T be a contravariant tensor in the curvilinear coordinates {u'}; it can be written
in the covariant bases g; and g;.

T= Tijgl.gj (4.21)
The divergence of T can be calculated from

0 o(T"g;g;)
T =of . T =ok. 2 55/
V=g =8 "5 (4.22)

=g (T,ligigj + Tijgi,kgj + Tijgigj,k)
Using Eq. (2.158), the covariant derivative of the covariant basis g; results in

g =g, = T8

y

gk = r;lkgn = ijgn
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Interchanging the indices, the divergence of a contravariant second-order tensor
T becomes

V-T= <T7i£gigj + T T g8y + FimTimg"gf) e

) o o (4.23)
= (7ot + T, T8k 4+ T, T ) g
Equation (4.23) can be written in the covariant basis g; at k = i.
V.T= (Tji + T T F,{mT"'") S,
= (17 + 10,1 4 T, T)g, (4.242)

= Tij|igj
Using Eq. (2.240), the covariant derivative of the tensor component TV with
respect #' on the right-hand side (RHS) of Eq. (4.24a) can be expressed in the
Jacobian J.

TV, = Tj'{.' + I T+ T ™

- or + T (1 6_J> + Tlmrl!m

o ror 4.24b
— Tf'"F{,,,Jr% (J%ZJFTU%) (4240
=TTy + ;% = T*T) +J7'(JTY),
Therefore,
VT =Tg = (T} + 771017, )g, (4.24c)

Interchanging the indices, the divergence of a covariant second-order tensor T can
be written as

v A(Tyg'e’)
Ouk

Tyg'g + Tyg g + T,ygigf;) g

V-T=

]

//

(4.25)

Tyug'g' — T;T},8"e — T;T],gg") - &
Tjx — T Ty; — Timrkmj> g(g - g"
ij|kgjkgi

—~

I
/N

ﬂ
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Furthermore, the divergence of a mixed second-order tensor T results as the same
way at k = i.

o(Tg's;)
Ouk
= (T},k + 10,17 — F}ZT,’},) Sig/

V- -T=g.

. ; A (4.26a)
= (le,i + l—‘imij - F]r:le> gj
=T;|ig’
= T;|igk]gk

Using Eq. (2.240), the covariant derivative of the mixed tensor component with
respect to u' on the RHS of Eq. (4.26a) can be written in the Jacobian J.

=T}, + T, 1" = T4,

ijim
1 aT; la‘] mrpi
== <J LT, ﬁ) -, (4.26b)

=7 (s17) ~Tir}

Therefore,
il o) i\ ki
V-T=T/g' =T;lig"&
e ik g (4.26¢)
= (1T, ~ 1Ty ¢

These results prove that the divergence of a second-order tensor T, such as the
stress tensor Il or deformation tensor D, results in a first-order tensor, which is a
vector in the curvilinear coordinates {ui }.

4.2.5 Curl of a Covariant Vector

Let v be a covariant vector in the curvilinear coordinates {u'}; it can be written in
the contravariant basis g’.

v =vg/ (4.27)

The curl (rotation) of v can be defined by
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Curlv=Rotv=V xv
o(v;g’)
Oul (4.28)

; 0 i i
= wx(ng’)zg X

=g x (Vj,igj + ng,];)
=v(g xg)+v(g xg))

Using Eq. (2.189), the covariant derivative of the contravariant basis g’ results in

g =-T}e' (4.29)

B

Substituting Eq. (4.29) into Eq. (4.28), one obtains the curl of v.

Vv =v(g xgl) + g x g))
= éijij7igk — erl]k(gl X gk) (430)
= éijij’igk — é"k’”vjl"ljkgm
where the contravariant permutation symbols can be defined as (cf. Appendix A).

) +J71 if (i,j, k) is an even permutation
gk = —J=' if (ij,k) is an odd permutation (4.31)
0 if i=j, or i=k; or j=k

However, the second term in RHS of Eq. (4.30) vanishes due to the symmetric
Christoffel symbols with respect to the indices of i and k, and the anticyclic
permutation property with respect to i, k, and m.

7j (Fz]k - l—‘ii)gm (4 32>
= (Th~Th)g, =0

<

~ikm 1J _
il g, =

<

Therefore, the curl of v in Eq. (4.30) becomes

V x v =ity e = é’/ka—:’i . (4.33)

4.3 Laplacian Operator

Laplacian operator is a linear map of an arbitrary tensor into an image tensor in
N-dimensional curvilinear coordinates.
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4.3.1 Laplacian of an Invariant

Laplacian of an invariant ¢ (zeroth-order tensor) is the divergence of (grad ¢).
Using Eq. (4.9), this expression can be written as

Div (Grad ¢) =V - V¢ = V¢ = Ad (4.34)

Substituting the gradient V¢ of Eq. (4.9) into Eq. (4.34), one obtains the
Laplacian A¢.

Ap=V -Vp=V-($,8)=V"(ng)

1 0 k 1 k k (4'35>
=85, (¢,kg )=¢"- (Pug + ¢igy)

Using Eq. (2.189), the covariant derivative of the contravariant basis g’ results
in
g =-T}g" (4.36)

Inserting Eq. (4.36) into Eq. (4.35) and using Eq. (4.19b), the Laplacian of ¢ can
be computed as

Ap =V
=g (¢,klgk +¢ kgkl ¢ klgk ¢ krlmg )-8
= ((f),klgk - ¢ Flkg )- g (4.37)

= (¢,kl - ¢,mrlk)g -g
= (¢,kl - ¢,mrkmz)gkl

The covariant vector components and their covariant derivatives with respect to u*
and u' are defined as

a¢ R R it S
P =g = P =g = Vi P = e = Ve (4.38)

= Aqﬁ = (v — vml";c’;)gkl = vk|1gkl.

4.3.2 Laplacian of a Contravariant Vector

Laplacian of a contravariant vector (first-order tensor) is the divergence of grad
v that can be computed as (Iben 1999)
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Div(Grad v) = Av =V - Vv = Vv
= (Wl = T, + WITS, ) 8" (4.39)
= Vkllmglmgk

Obviously, the Laplacian of a contravariant vector results in another contravariant
vector according to Eq. (4.39).

The second covariant derivative of the contravariant vector component v* in
Eq. (4.39) can be defined as

Wi = Vi — V[T, + v"|1F’I§m (4.40)
where
im =(411) = Vi + V5T +V' T, (4.41)
W, = v{;, + v"Fﬁp (4.42)
V0= v+, (4.43)
The vector triple product gives the relation of
ax (bxc)=bhb(a-¢c)—(a-b)c (4.44)

Thus, Eq. (4.44) can be rewritten in the curl identity of the vector v is set into the
position of the vector c.

Vx(Vxv)=V(V-v)=V.-(Vv)=V(V-v)—Av (4.45)
Therefore, the Laplacian of a vector v results in

Av=V - (Vv)=V(V-v) -V x (VxVv)&

4.46
Div(Grad v) = Grad(Div v) — Curl(Curl v) (4.46)

4.4 Applying Nabla Operators in Spherical Coordinates

Spherical coordinates (p, ¢, 0) are orthogonal curvilinear coordinates in which the
bases are mutually perpendicular but not unitary. Figure 4.1 shows a point P in the
spherical coordinates (p, ¢, 0) embedded in orthonormal Cartesian coordinates
(xl, x2, x3). However, the vector component changes as the spherical coordinates

vary.
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Fig. 4.1 Orthogonal
spherical coordinates

(p,9,0) — (u',u?,ud):
ul=p;ul=¢p;ut=0

x3 )
pSsing
9,
93
P
//// 8 —g P g\\\ 2
oL S S N
e1 | ¢

10

. pcos ¢

|

X! !

|

|

|

|

The vector OP can be written in Cartesian coordinates (xl, x2, x3):
R = (psin¢cosb)e; + (psin¢sinb)e, + pcos ¢ e; (4.47)
= xlel + x2e2 + x3e3 .

where
e;, e, and e; are the orthonormal bases of Cartesian coordinates;
¢ is the equatorial angle;
0 is the polar angle.

To simplify the formulation with Einstein symbol, the coordinates of u', u?, and
u® can be used for p, ¢, and 0, respectively. Therefore, the coordinates of the point
P(u', u*, u®) can be written in Cartesian coordinates:

2 3

x! = psin¢gcosd = u' sinu®cosu
P(u',u*,u®) = { x* = psin¢sin 0 = u' sinu? cos u® (4.48)
x> = pcos¢ = u' cosu?

The covariant bases result from Chap. 2.
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g, = (sin ¢ cos O)e; + (sin ¢ sin O)e; + cos Ppe; = |g,| = |g,| =1

g, = (pcos g cosf)e; + (pcos dpsinf)e; — (psinp)es = [g,] = [g4] = p

g; = (—psingsinb)e; + (psingpcosB)e; +0-e3 = |g;| = |gy| = psind
(4.49a)

The covariant metric tensor M in the spherical coordinates can be computed
from Eq. (4.49a).

g g1 &3 1 0 0
M= 821 822 823 = 0 p2 0 5 (449b)
81 8% 833 0 0 (psing)

Similarly, the contravariant bases result from Chap. 2.
g' = (sincos O)e; + (sin ¢ sin O)e; + cos e; = [g'| =1
1 1 1 1
g’ <—cos ¢ cos 0>e1 + (—cos ¢ sin 0>e2 - <—sin ¢>e3 = |g2| =-
P p P P

3 _1sin9e+lcosee+0e:>|3|_ 1
8 psing) ' \psing) ° 378 ~ psing

(4.50a)

The contravariant metric coefficients in the contravariant metric tensor M~ can
be calculated from Eq. (4.50a).

gll g12 g13 1 0 0
M'=|g" g2 ¢B|=1]0 p2 0 . (4.50b)
g & g 0 0 (psing)™”

4.4.1 Gradient of an Invariant

The gradient of an invariant A € R can be written according to Eq. (4.9) in

0A

=Ag (4.51)
Dividing the covariant basis by its vector length, the normalized covariant basis
(covariant unitary basis) results in

g=8 _ & _ i— (4.52)

B |g:] B v/ 8ii) B
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The covariant basis in Eq. (4.52) is given in

g = hg/ (4.53)
where h; are the vector lengths, as given in Eq. (4.49a).

ho= e =gl =gl =1
hy = /82 = |g.| = |8, = p (4.54)
hs = /833 = |g3] = |g| = psin
The contravariant bases can be transformed into the covariant bases in the
orthogonal spherical contravariant basis, as given in Eq. (4.50b).

11

g'=¢"g =¢,
I
2 _ 226 —
g=glg= {8 T8 0% (4.55)
3 33 1
g =gt =

Substituting Egs. (4.53, 4.54) into Eq. (4.55a), one obtains

g =g, =(hg) =g

1
2 _ = — *) = _g*
3 = = h *) = —_— *
(psin ¢)2 8o (psin ¢)2( 389) psm(j)ge

Using Eqgs. (4.51, 4.55b), the gradient of A can be expressed in the physical vector
components in the covariant unitary basis.

0A . A
A=—9o = [2L]g*
v au‘g (hi>gl

_oa, 104, 1 %,
T8 T 5065 T Lsing 00 20

(4.56)

4.4.2 Divergence of a Vector

The divergence of v can be computed using the Christoffel symbols described in
Eq. (4.15a).
Jov L 0(vig)
u Ou (4.57)
= vfi + vjrfj> =

V-v
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At first, the covariant derivatives of the contravariant vector components in
Eq. (4.57) have to be computed.
vl = V,11 + TV + TV 4T for i=1;=1,2,3
VI =vh+ D3 + T + T35 for i=2;j=1,23 (4.58)
Vi =i+ + T + T30 for i=3;j=1,2,3

The second-kind Christoffel symbols in spherical coordinates can be calculated
as (Klingbeil 1966).

0 0 0 0 4 0
=10 —p 0 ; =110 0 ;
0 0 —psin® 0 0 —singcos
psin” ¢ pcos (4.59)
0 o0 3
;=10 0 cot¢
5 cotg 0

The physical vector components v'* result from the contravariant vector com-
ponents in the covariant unitary basis g according to Eq. (B.11) in Appendix B.

1
v=—yl=y
¥ ¢ v
Y
V=== y2r=2y 4.60
hl hlZ P i) ( )
3 %3
Y _hgv T psing

Using Egs. (4.59, 4.60), the covariant derivatives of the contravariant vector
components can be computed as

ov
1 1 P
V|1:V = —
)1 op
1 10v 1
2 2 2 1 2 1 ¢
Vip=vo+ 5y =vi+—v =——+—v 4.61)
| 2 21 2 p pad) p P (
3 2 1 0w

1 v
V3|3:V?3+1_§1V1+r +;VP+COt¢;¢

2" = psin q’)@
Thus, the divergence of v results from Eq. (4.61) in
Vov=1] =i+ +v);

0 10 1 0 2 4.62
_ Oy Lvy ﬂ+ﬁ+cot¢%¢, (4.62)
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4.4.3 Curl of a Vector

The curl of a vector results from Eq. (4.33).

VXxv= éijij)igk
1 (4.63)

=7 [(Vs,z —v23)8 + (vizg —v31)8 + (vo1 — V1,2)ga]

The Jacobian of the spherical coordinates were calculated in Eq. (2.37) as
J =p*sin¢ (4.64)

Using Egs. (B.19, 4.49b), the covariant vector components can be computed in
their physical vector components.

Vo (4.65)

According to Eq. (4.53), the covariant bases can be written in the covariant
unitary basis.

g =hg =1g =g,
g =g = { & =g = pg; = pg; . (4.66)
g3 = hag; = (psin¢)g; = (psin¢)g;

Substituting Eqgs. (4.64—4.66) into Eq. (4.63), the curl of v can be expressed in
the unitary covariant basis g;.

1 1 1
Vxv= j(V3,2 —3)g + 7 (vizg—v31)g +3(V2,1 —Vi2)g;

_<@(psin¢-w)_6(p-v<p)> |
- 3¢ 30 ) pPsing™

+ (%_a(p Sin¢~v0)) 1 *

(4.67)

00 op psin ¢ &2

a(pvd’) avﬁ)l *
+ . 7 __ __F —
( )™

Computing the partial derivatives in Eq. (4.67), one obtains the curl of v in the
unitary spherical coordinate bases.
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_ [ 10vg 1 Ovy AP
va—(pa¢ psin¢69+C0t¢p)gﬂ

1 dv, 0vg vy
Do V0 _V0) g 4.
+(psinqs 30 p>g¢ (4:68)

vy 10y, v(/,) .
(w2l L,
(@p pdp  p)*

4.5 The Divergence Theorem
4.5.1 Gauss and Stokes Theorems

The divergence theorem, known as Gauss theorem deals with the relation between
the flow of a vector or tensor field through the closed surface and the character-
istics of the vector (tensor) in the volume closed by the surface. Gauss law states
that the flux of a vector through any closed surface is proportional to the charge in
the volume closed by the surface. This divergence theorem is a very useful tool
that can be mostly applied to engineering and physics, such as fluid dynamics and
electrodynamics, to derive the Navier—Stokes equations and Maxwell’s equations,
respectively.
The Gauss theorem can be generally written in a three-dimensional space.

7{v -ndS :/V -vdV (4.69)
s 4

where v is the fluid vector through the surface S; n is the normal vector on the
surface; and V - v is the divergence of the vector v (Fig. 4.2).
The outward fluid flux from the volume V causes the negative change rate of the

volume mass with time.
0
]{pv - ndS = —/6—de (4.70)
S v

Using Gauss divergence theorem, the balance of mass (also continuity equa-
tion) in the control volume V can be derived in

d
fpwndsz —/a—[;dV: /v-(pv)dv (4.71)
S \%4 \%4

where p is the fluid density.
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Fig. 4.2 Fluid flux through a v

closed surface S
VeR '

Fig. 4.3 Fluid flux through Vxv
an open surface S,

By rearranging the second and third terms in Eq. (4.71), the continuity equation
can be written in the integral form for a control volume V:

/(%—€+V-(pv)>dV=0¢%—f+V-(pv)=0 (4.72)
4

Stokes theorem can be used for an open surface S,, as shown in Fig. 4.3. The
Stokes theorem indicates that the flow velocity along the closed curve (C) is equal
to the flux of curl v going through the open surface S,,.

]{v~dl=/(va)-ndA 4.73)
(€) So

where dl is the length differential on the closed curve (C) of the surface S;
V x v is the curl of the vector v.
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4.5.2 Green’s Identities

The Green’s identities can be derived from the Gauss divergence theorem.
Sometimes, they can be usefully applied to the boundary element method (BEM)
using the Green’s function (Nguyen-Schifer 2013; Crocker 2007; Fahy and
Gardonio 2007). Two Green’s identities are discussed in the following section.

4.5.3 First Green’s Identity

The vector v can be chosen as the product of two arbitrary scalars y and ¢.
v=yVop (4.74)
The divergence of v can be computed as follows:

V.v=V-yVoy)
— V- Vo+yVVe (4.75)
=V -Vo+yVie

Applying the Gauss divergence law of Egs. (4.69-4.75), one obtains

/V-vdV:%v-ndS(:)
v S

/(v‘p'v¢+‘pvz‘0)dvz f‘#(vwn)dsz jf.pz_‘zds
S

\4 N

(4.76)

4.5.4 Second Green’s Identity

The vector v can be chosen as the function of two arbitrary scalar products of i and ¢.
v=yVe — oV (4.77)

Thus, the divergence of v can be calculated as follows:

V-v=V-yVe - oVy)
=Vy Vo +yVie—Vo Vy— VY (4.78)
=yVip — oV
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Applying the Gauss divergence law of Eq. (4.69—4.78), one obtains

/V-VdV:?{V'ndSc)
v S

[ o -ovp)av = § Vo - Vi) nas (4q0)

14

B dp oy

f -t
S

where the gradients of the scalars in the normal direction can be defined as

G 0
—(pEVQD'Il; a—l}/:EVdrn. (4.80)

4.5.5 Differentials of Area and Volume

In Gauss divergence theorem, the differentials of area dA and volume dV are
changed from Cartesian coordinates to other general curvilinear coordinates by
coordinate transformations.

4.5.6 Calculating the Differential of Area

Figure 4.4 shows the transformation of Cartesian coordinates {x'} into the cur-
vilinear coordinates {u'}. The differential dr can be written in the covariant basis.

o i
dr:@du = g,du (4.81)

Therefore,

dx! = e;dx! = g, du'

dx? = e,dx? = g,du? (4.82)

dx' = e;dx’ = g,du’ & {

The area differential can be calculated in the curvilinear coordinates (Nayak 2012).
dA = |dx' x dx*| = |(e; x €)|dx'dx* = dx'dx’

(4.83)
= |(g1 x &)|du'du?

Using the Lagrange identity in Appendix E, one has the relation of
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dA = \[gdu'du’
e

u?= const.

0 ey x1

Fig. 4.4 Coordinate transformation in two-dimensional coordinates

(81 x &) = /811822 — (812)2 (4.84)
=z

where g;; are the covariant metric coefficients, as defined in Eq. (2.52).
Substituting Eq. (4.84) into Eq. (4.83), the area differential becomes

dA = dx'd¥?
= (g, x g)|du'du?

: (4.85)
=1\/g1182 — (g12) du'du?

= \/§du1 du?.

4.5.7 Calculating the Differential of Volume

The volume differential can be calculated in the curvilinear coordinates (Fig. 4.5).

dV = |(dx! x dx*) - dx’| = |(e; x €3) - e3]dx' dx’dx’
= [e, e, e3]dx! dx’dx® = du'dx?dx®
= (g1 x &) - gsldu' di’dic’ = [gy, gy, g]du' du’d’
= Jdu'du’du®

(4.86)
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usd

dV =J du'du*du’

av = dx'dx*dx’

)

Fig. 4.5 Coordinate transformation in three-dimensional coordinates

The scalar triple product of the covariant bases of the curvilinear coordinates
can be defined as

(81 X&) 8 =88, 8] (4.87)

The determinant of the covariant basis tensor equals the scalar triple product of the
covariant bases, as given in Eq. (1.10).

oxl ox! ox!
ou! our ol
ou! ou? ol
ou! Ou? 0

81,8, 8] = =J (4.88)

where J (Jacobian) is the determinant of the covariant basis tensor.
Using Egs. (4.15a, 4.85, 4.86), the Gauss divergence theorem in general cur-
vilinear coordinates u’ € R® can be written in the tensor integral equation:

?{ v-ndS = / vV vdV & 7{ Vingy/gdu' du?
S

§ v (4.89)

:/(vfi—|—vjl"fj)‘ldulduzdu3 = /v"|l~Jdulduzdu3
14 4

The physical vector components v'' result from the contravariant vector compo-
nents in the normalized covariant basis (unitary basis) g according to Eq. (B.11)
in Appendix B.
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Vi :% for i=1,2,3 (4.90)

The scale factor h; can be defined as the covariant basis norm Ig;l of the cur-
vilinear coordinates {u'}.

hi = |g;| = \/g(i) (no summation over i) (4.91)

Therefore, the divergence theorem in Eq. (4.89) can be rewritten in the cur-
vilinear coordinates u' with the physical vector components as follows:

*i v*_i *] .
7{ 1;1—im\/§duldu2 = / (h_ Vh—JrJ> Jdu'duPdu®
s v . (4.92)
E/ﬁv*i|ilduldu2du3

Vv

In the following sections, some applications of tensor analysis and differential
geometry are applied to computational fluid dynamics (CFD), continuum
mechanics, classical electrodynamics, electrodynamics in relativity fields, and the
Einstein field theory as well.

4.6 Governing Equations of Computational
Fluid Dynamics

Navier—Stokes equations describe fluid flows in Computational Fluid Dynamics
(CFD). In this book, Navier—Stokes equations are derived for compressible flows
in a general rotating frame of the turbomachinery. The rotating frame rotates at an
angular velocity o(f) with respect to the inertial coordinate system (Chen 2010;
Schobeiri 2012). At @ = 0, the Navier-Stokes equations can be used for a non-
rotating frame (a special case). In this case, the velocity w in Eq. (4.94) is used in
the equations instead of the absolute fluid velocity v.

4.6.1 Continuity Equation

The continuity equation satisfies the mass balance of the fluid in the given control
volume. According to Eq. (4.72), the continuity equation can be written as

op

5tV (pv) =0 (4.93)
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The absolute velocity v is the sum of the relative velocity w and the circumfer-
ential velocity u.

v=w+u=w+ (0 xr) (4.94)

Substituting the absolute velocity v in Eq. (4.94) into Eq. (4.93), one obtains
the continuity equation of compressible fluids in a rotating frame.

E;—lt)+v-p(w—i-(m><r))=0<:>
2—€+V'(pw)+v-p(mxr)20© (4.95)
op

a—t+V-(pw)+pV-((u)xr)+(wxr)-szO

The third term in Eq. (4.95) equals zero because the circumferential velocity
(@ x r) does not change in the inertial coordinates at an arbitrary radius vector r.

pV - (o xr)=0 (4.96)
Thus, Eq. (4.95) becomes
op
5 T(@x1)-Vp )+ V- (pw)
5 (4.97)
= 9P . —
=5 T V- (pw)=0

The partial derivative with respect to the rotating frame can be defined by
Schobeiri (2012).

Orp

t

2—’; +(@xr)-Vp (4.98)

The continuity Eq. (4.97) can be written in the tensor equation of

Orp o
E‘FV'([)W) =0

0 .

@aLthr (pw)]: =0 (4.99a)
0 . -

& L2 (pw), + (pw)Iy = 0
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According to Eq. (4.18a), the continuity equation can be written in the Jacobian J.

Orp N
§+(PW)|;—0.
9p  13Upw) _ (4.99b)
o J ou
Orp 1 A
E‘F}(]/)W)’i—o

The physical vector component in the normalized covariant basis g; (unitary
basis) can be obtained from Eq. (B.11) in Appendix B.

*1

Wi = how' = W = Wh— (4.100)

where A; is the norm of the covariant basis g;.
Therefore, the continuity tensor Eq. (4.99a) can be written in the physical
velocity components of w* using Eqgs. (2.244, 4.100).

aRP w*i w*j .
— — I, =0
o (p hi>7i+<p h,~> v

, . (4.101a)
= akl + w +l w¥ ﬂ =0
ot p h; i J P h]‘ ouw
and using Eq. (4.100), the continuity tensor Eq. (4.99b) becomes
Orp  10(Jpw') ogp 1 w
R e A Y
’ (4.101b)

Orp w 1/ wi\ oJ
—_— - -~ = 0
< ot + (p hi>,l‘+‘] <p h,) ou'

4.6.2 Momentum Equations

The momentum equations describe the balance of forces in a given control volume
V. According to Newton’s second law, the balance of forces F; for an arbitrary unit
volume can be written as

D n
P =3"F, (4.102)
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The substantial derivative in the inertial coordinate system is defined as

where the first term is the time derivative; v is the absolute velocity.
Substituting the absolute velocity v in Eq. (4.94) into Eq. (4.103), one obtains

&:D(VH_O)XI‘):a<w+wxr)+v~V(w+mxr)

0w O(exr)
=3 T+(w+mxr)-V(w+mxr)

The second term in the RHS of Eq. (4.104) can be calculated as

W _ <m « %) . (aa_‘;’ y r) (4.105)

The first term in the RHS of Eq. (4.105) equals zero because the radius vector
r does not vary with time. Thus, Eq. (4.105) simply becomes

a("’aj r_ <aa_‘;’ « r> (4.106)

The third term in the RHS of Eq. (4.104) can be written as

v.-Vv=(w+eoxr)-V(w+oxr)
=w-Vw+w-Vioxr)+ (@xr)-Vw+ (@ xr) V(o xr)
(4.107a)

where the last three terms in the RHS of Eq. (4.107a) result from (Chen 2010;
Schobeiri 2012):

w-V(oxr)=oxw,
(@xr)-Vw =0 X W, (4.107b)
(@xr) - Vioxr)=ox (o xr)

Substituting Eqgs. (4.106, 4.107a, 4.107b) into Eq. (4.104), the substantial deriv-
ative of the absolute velocity v results in

g—::%—v:—kw-Vw—i—(a—mxr>+[wx(mxr)]+2(mxw) (4.108)

ot
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The substantial derivative of the absolute velocity v consists of the following
terms: the first term in the RHS of Eq. (4.108) is the time derivative of the relative
velocity w; the second term denotes the convection term; the third term is the
circumferential acceleration at the radius r; the fourth term displays the centripetal
acceleration of the fluid unit volume; and the last term is the Coriolis acceleration.
The external forces acting upon the fluid control volume comprise the pressure,
fluid viscous, and gravity forces. As a result, the momentum equations for a
rotating frame with an angular velocity @(7) result from Egs. (4.102, 4.108).

U LR v (4.109)

where IT is the viscous stress tensor of fluid that is written using the Stokes relation
(Chen 2010).

2
I =2uE — ZuV - (WE
HE =3V - (WE) (4.110a)

=n'gg = ng's’
in which p is the dynamic viscosity of fluid; E is the strain tensor of fluid that is
written in the strain components, cf. Eq. (4.176):

E=clgg =¢g'g (4.110b)

The first two terms in the left-hand side (LHS) of Eq. (4.109) can be written in the
tensor equation with the physical components as

ow _6(wkgk) i
E-FW-VW—T-F(W g) Vw

. i i . i 4.111
=g + (') - (W' |igeg’) = e +win ( )

i(sjl:gk
=g +whwilige = (W + w'w'l;) g

Equation (4.111) can be written in the unitary covariant basis with the physical
velocity components of w* using Eq. (4.100).

ow Wk
s . = — 4 i *
PR Vw k(hk +hkhiw |l>gk

(4.112)

(~*k 1 wk i ) *

=|lw +-—w"w ‘i L
hi

where h; and hy; are the norms of the covariant bases g; and g, respectively.
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The third term in the LHS of Eq. (4.109) can be written in the tensor equation
of the unitary covariant basis with the physical vector components and the con-
travariant permutation symbols (cf. Appendix A).

G0 . ; i
5 XT= w;r;(g x g’)

= &g (4.113)

= e (hioiry)gg

The fourth term in the LHS of Eq. (4.109) can be written in the tensor equation
and the covariant permutation symbols (cf. Appendix A).

(wlgl) X (wirjéijkgk)
wlwirjéijk(gl X gk)

= w0’ rge* g, (4.114)

o X (®Xr)

_ J slkm
= w0'r Ok Bm

= w0 rfég." 2.,

It can be written in the tensor equation of the unitary covariant basis with the
physical vector components.

o X (0 X 1) = hyowrsrg
(@ x) = o0y (4.115)
= hkwlw’rféijg}:

The Coriolis term in the LHS of Eq. (4.109) can be written in the tensor
equation of the unitary covariant basis with the physical vector components and
the contravariant permutation symbols (cf. Appendix A).

2(0 x w) = Zwiwm(gi X g,) = 2w,~wm(gi X g,,,jgj)
A"k
= 267 0igmW" 8 (4.116)

AT hk
= 281kwigmj h—w g

Using Egs. (B.2, B.3), the pressure tensor in the RHS of Eq. (4.109) can be
written in the unitary covariant basis with the physical vector components.

——Vp=——plgi=——('ly)g = ——p’g; = ——pg;
P P P p o (4.117)
Lop= lp g = l(p 8 h)g; = L g
p ! p Tk
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Using Eq. (B.3), the physical covariant stress tensor components 77:;- in the
unitary contravariant basis can be computed as

I = r;g's’ = m;("g0)(¢8)
= (nyg" ¢ mh)gig; = migie; (4.118)
= ;= (g™ & hih)m;

Using Egs. (4.25, 4.118, B.2) and interchanging the index / with k, the friction

covariant stress tensor in the RHS of Eq. (4.109) can be rewritten in the unitary
contravariant basis with the physical tensor components.

AV | |

= _nijlkgikgi
P p
1 ji i 1 ik _li *
= ;“ijlkg’k(gl g) = ;“ij|kg’kgl (hg)) (4.119)
_ gjkgli * % gﬂgki | Lk
= oakglhy milkgr = gl iy il 8

The physical contravariant stress tensor components 7~ in the unitary covariant
basis can be computed using Eq. (B.2).

11— g — 0 )

_ nljhlhjg;kg]* = n*ljgi gj* (4120)
= TC*lj = hihjﬂ?ij

Using Eqgs. (4.24a, 4.120, B.2), the friction contravariant stress tensor in the
RHS of Eq. (4.109) can be written in the unitary covariant basis with the physical
tensor components.

vl 1
VR = Ll = g
P P (4.121)

1 1
_ —7{*’1 lg* _ _n*lk ig*
phi & phi i

Using Egs. (B.2, B.3), the gravity tensor in the RHS of Eq. (4.109) can be
written in the unitary covariant basis with the physical vector components.
—V(g2) = —gdlg; = —e(Zhy)g = —g*g;

sk %

,- T (4.122)
—V(gz) = —gzig = —g(zi8" h)g = —8" &

where g (=9.81 m/s?) is the earth gravity.
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4.6.3 Energy (Rothalpy) Equation

The energy equation describes the balance of energies in a control volume. They
are based on the first law of thermodynamics for an open system.
The specific rothalpy [ for a unit volume is defined as

I=h+ %vz —uv,
| (4.123)
=c,T ~|—§v2 — uvy

where £ is the specific enthalpy of fluid.
Using the trigonometric calculation with the velocity triangle, the circumfer-
ential absolute velocity results (Fig. 4.6)

vy = U+ wy (4.124)
Similarly, the absolute velocity can be written using Eq. (4.124).

V=v,+V,
=(u+w,) +vn
:>v2:(u—|—wu)2—|—v,2n

:u2+wﬁ+2uwu—|—vfn

(4.125)

Substituting Eqgs. (4.124, 4.125) into Eq. (4.123), one obtains the specific
rothalpy of the turbomachinery.

IEh—i—%vz—uvu

= h—i—l(u2 + w4 2uw, +v2) — u(u+w,)

2
= B+ (w2 +v2) — (4.126)
_ L2 13
—h—i—zw S
1 1 2
:h—i—zw-w—i(mxr)

Therefore, the specific rothalpy / (an invariant) becomes

I =c,T+ %w W — %(m x r)? (4.127)

Using the first law of thermodynamics for an open system, the energy equation can
be written as (Chen 2010).
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Fig. 4.6 Triangle of
velocities in an axial
turbomachinery
Vm
o r
Q)
DI ol 10p 1 .1
— | == VI=——+-V_. —w-(V-1I II-E 4.128
(1) =5 w T1= L v s (VI (B (@128

in which the first term in the RHS of Eq. (4.128) denotes the specific pressure
power, the second term is the specific heat transfer power, and both last terms are
the induced specific viscous power of the stress and strain tensors Il and E of fluid
acting upon the control volume.

In the following section, the relating terms in the energy Eq. (4.128) are cal-
culated. Firstly, the substantial time derivative of the specific rothalpy I with
respect to the rotating frame can be written in the tensor equation.

DI oI
_ E —_— . I
<Dt> rot at + v v

=I+wlg ¢ (4.1292)
=]+ wJI’i(S]’.
=1+ w"I,,-
Using Eq. (4.100),*phe tensor Eq. (4.129a) can be written in the velocity
physical component w .
ol w*ilyi

LI R ] 4.129b
6t+w v + m ( ob)

The specific pressure power is given in

1op _p (4.130)




4.6 Governing Equations of Computational Fluid Dynamics 173

The heat transfer specific power due to heat conduction through the control volume
can be written using the Laplacian of fluid temperature 7, as given in Eq. (4.37).

q=AVT =

4

0
)L, ij k

= ;g (T — T-,krij)

1 1
—V-(’l:;V-(/IVT) =-VT

) (4.131)

where 4 is the constant thermal conductivity.
The fluid viscous power on the control volume surface can be written in the
tensor equation with the stress and strain tensor components of n” and &;;.

1 1 - , 1 , ,
—[w-(V-I) + (IT-E)] = — (wn¥|; + ne;) = — (gaw*n"|; + n¥ey) (4.132a)
p p p

Using Eqgs. (4.100, 4.118), Eq. (4.132a) can be expressed in the physical vector
components w.

1 1 . gk
Zw-(V-I)+ (I1-E)] = —— [ ggw*n¥| + —L . 4.132b

4.7 Basic Equations of Continuum Mechanics

Continuum mechanics deals with the mechanical behavior of continuous materials
on the macroscopic scale. The basic equations of continuum mechanics consist of
two kinds of equations. First, the equations of conservation of mass, force, and
energy can be applied to all materials in any coordinate system. Such equations are
the Cauchy’s laws of motion, which concern with the kinematics of a continuum
medium (solids and fluids). Second, the constitutive equations describe the mac-
roscopic responses resulting from the internal characteristics of an individual
material. The additional constitutive equations help the Cauchy’s equations of
continuum mechanics in order to predict the responses of the individual material to
the applied loads.

Physical laws must always be invariant and independent of the observers from
different coordinate systems. Therefore, such equations describing physical laws
are generally written in the tensor equations that are always valid for any coor-
dinate system.
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T : stress tensor
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Fig. 4.7 Acting forces on a moving body

4.7.1 Cauchy’s Law of Motion

The Cauchy’s law of motion is based on the conservation of forces in a continuum
medium. Figure 4.7 displays the balance of forces acting on the moving body in a
general curvilinear coordinate system ul, u2, .

The Cauchy’s stress tensor T can be written in the contravariant second-order

tensor as
T="T'gg (4.133)

The body force f per volume unit can be expressed in the contravariant first-order
tensor (vector).

f=flg (4.134)

The inertial force acting upon the body can be written in the contravariant first-
order tensor (vector)

finern = —pa’g; = —pii'g; (4.135)

where p is the body density.
Using the D’ Alembert principle, one obtains the Cauchy’s law of motion in the
integral form.

> F :j{T-nds+/de+/fde= 0 (4.136)
S Vv \%4

Applying the Gauss divergence theorem to Eq. (4.136), the first integral over
surface S can be transformed into the integral over volume V.
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]{T -ndS = /v -TdV = /Tij|l.gjdV (4.137)
s 14 v
where the divergence V - T of a second-order tensor T results from Eq. (4.24a)
;i o o (4.138)
= (77 + 1,1 4+ T, T g,

Applying the coordinate transformation in Egs. (4.89), (4.137) can be written in
the curvilinear coordinates using the Jacobian J.

/ V-TdV = / TY|;g;Jdu' du?du’ (4.139)
% v
Thus, the conservation of forces can be rewritten in the curvilinear coordinates.

/ (T9); + 7 — pitf)gJdu' du*d’ = 0 (4.140)
14

The Cauchy’s tensor equation for an arbitrary volume V becomes
Ti|; +f = pii/ (4.141)
In the case of equilibrium, the Cauchy’s tensor equation becomes
Ti|;+f1 =0 (4.142)
The Cauchy stress tensor T contains nine tensor components:
79 =" for ij=1,2,3 (4.143)
Using Eq. (4.143), one obtains the Cauchy’s tensor equations for both cases:

| 4 f1 = piil;
..l’ f. P (4.144)
i +f=0

within using the Christoffel symbols of second kind, the covariant derivative of the
stress tensor components with respect to u' is defined as

) =1+ T W 4 T o™ (4.145)
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Fig. 4.8 Stress tensor o33 3
components T' acting upon a T
volume element dv
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where o is the normal stress; 7 the shear stress.
The stress tensor T' on the surface S is defined as the acting force F per unit of
surface area.

AF OF

T :Alg—I}oA_S_&

(4.147)

At each point in the surface S, there are a set of three stress tensor components,
one normal stress component ¢ (pressure) perpendicular to the surface and two
shear stress components T parallel to the surface, as shown in Fig. 4.8. Note that
the tensile normal stress denotes a positive normal stress; the compressive stress, a
negative normal stress.

In the following section, it is to prove that the second-order Cauchy’s stress
tensor is symmetric in a free couple-stress body of nonpolar materials. Note that
polar materials contain couple stresses.

The conservation of angular momentum of the body in equilibrium (cf.
Fig. 4.7) can be written as

ZM:]{(rx T)dS+/(r x f)dV =0 (4.148)

N 14
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The vector r can be written in the covariant basis of curvilinear coordinates:
r=x'g; (4.149)

Using the Levi-Civita symbols in Eq. (A.5) cf. Appendix A, the angular
momentum equation can be expressed as

]{ ex' T g dS + / epxlff g dv = 0 (4.150)
N \4

Applying the Gauss divergence theorem and using the transformation of curvi-
linear coordinates, Eq. (4.150) results in

/ (.s,-,-k(xfT'"") |m+8,-jkxjfk> g Jdu ditdi® = 0 (4.151)
v
Calculating the covariant derivative of the first term in Eq. (4.151), one obtains
/ Eijk (xj | T+ x/ T'”k|m) g Jdu' dudu® + / (eipx’f*) g du' durdu® = 0

|4 \4
(4.152)

Rearranging the second and third terms in Eq. (4.152), one obtains
/ e’ | T™ g Jdu' du*du’® + / ejx’ (ka|m+fk) g Jdu'di’di> =0 (4.153)
v 14

Due to the balance of forces in Eq. (4.142), the second integral in Eq. (4.153)
equals zero.
Therefore, the tensor equation of angular momentum Eq. (4.153) results in

/ gx’! | T g Jdu' duPdi’ = 0 (4.154)
v

Using the relation of x/|,,= &/, one obtains for an arbitrary volume V.

eed! ]|, T = 58] T = g% = 0 (4.155)

= 8ijk‘L'jk =0
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Note that &;; = —é&;, one obtains from Eq. (4.155)

. 1 , ,
& '/k=—8i' Jk _ ) =0
e 2’1"(1 *) (4.156)
= = for jk=1,2,3

This result proves that the Cauchy’s stress tensor is symmetric in the free couple-
stress body. In a three-dimensional space, there are six symmetric tensor com-
ponents of shear stress 77 and three diagonal tensor components of normal stress
¢", as shown in Eq. (4.146).

It is obvious, the Cauchy’s stress tensor is non-symmetric if the couple stresses
act on the body.

4.7.2 Principal Stresses of Cauchy’s Stress Tensor

The Cauchy’s stress tensor T in a three-dimensional space generally has three
invariants that are independent of any chosen coordinate system. These invariants
are the normal stresses in the principal directions perpendicular to the principal
planes. In fact, the principal normal stresses are the eigenvalues of the stress
tensor, where only the normal stresses act on the principal planes in which the
remaining shear stresses equal zero. The eigenvectors related to their eigenvalues
have the same directions of the principal directions, as shown in Fig. 4.9.

The principal stress vector T' of the stress tensor on the normal unit vector n;
(parallel to the principal direction) can be expressed as

T = /n; (4.157)

Furthermore, the principal stress vector can be written in a linear form of the stress
tensor components and their relating normal unit vectors.

T =o'n; for j=1,2,3 (4.158)
where using the Kronecker delta, the normal unit vector n; is defined as

n, =n5 for ij=1,2.3 (4.159)
The relation between the unit vectors in Eq. (4.159) denotes that all shear stresses
vanish in the principal planes perpendicular to the unit vectors n; with all indices

j # i. In the case of j = i, only the principal stresses act on the principal planes.
Substituting Egs. (4.158, 4.159) into Eq. (4.157), one obtains
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Fig. 4.9 Acting principal n

stress T' on a principal plane principal direction

stress tensor T
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For non-trivial solutions of Eq. (4.160), its determinant must equal zero.
Therefore,

(a“ _ /1) o2 o3
det(a? — 20l =] o (e2—-J) ¥ |=0 (4.161)
3! 532 (033 _ /1)

This equation is called the characteristic equation of the eigenvalues of the sec-
ond-order stress tensor T.

Calculating the determinant of Eq. (4.161), the third-order characteristic
equation of A results in

B4+ 02 —bi+L=0 (4.162)
within
I = Tr(a");
L = Yo'l — gligh); (4.163)
I; = det(a’j)

Generally, there are three real roots of Eq. (4.162) for the eigenvalues in the
principal directions.

Jo=I ¢ —d =7 (4.164)
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The eigenvalues of Eq. (4.164) are the roots of the Cayley—Hamilton theorem.
The stress tensor T can be written in the principal directions as follows:

) gl 0 0
T=(")=10 o> 0 (4.165)
0 0 ¢

The maximum shear stress occurs at the angle of 45° between the smallest and
largest principal stress planes with the value

Jmax_“mm| ’01_03’ { gmiddie ’Ul+‘73|
= = at ¢ = 1

2 2 2

(4.166)

4.7.3 Cauchy’s Strain Tensor

The Cauchy’s strain tensor describes the infinitesimal deformation of a solid body
in which the displacement between two arbitrary points in the material is much
smaller than any relevant dimension of the body. In this case, the Cauchy’s strain
tensor is based on the small deformation theory or linear deformation theory.

The vector R(u', u?, i, 1) of an arbitrary point P of the body at the time ¢ after
deformation results from the vector r(ul, u, u3) of the same point at the time #,
before deformation and the small deformation vector v(ul, uz, u3, 1), as shown in
Fig. 4.10.

R(u', 1) = r(u',u?,0®) + v(u', u?, i, 1) (4.167)

The covariant basis vectors of both curvilinear coordinates at the times 7y and
t result from

OR Or Ov
@7@4»@ = G,’—gi+V,i (4168)

The difference of two segments can be calculated by

dR* — dr* = G;G;du'du’ — g;g;du’du’

o o (4.169)
= (G — gij)du'du’ = 2y;du'du’
where y;; are the components of the second-order strain tensor.
Calculating the covariant metric coefficients, one obtains
G -G =(g+v;) (g+v,)=g g+gv+gv,+Vv,v,
= (g DGtV =g g+ev;+gv, iV (4.170)

=G —8 =g -V, tg Vit+tVv,V,
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Fig. 4.10 Infinitesimal attime t
deformation of a solid body

at time t,

———
— ey

Thus, the stress tensor components can be calculated as
1 1
Vi = E(Gij —&j) = E(gi Vit g Vit Vi)

L (L L AL
2 8i oul & Ou'  Ou' Oul

(4.171)

The deformation vector v can be written in the contravariant and covariant bases.
v =g = g (4.172)

Using Egs. (2.207, 2.200), one obtains the covariant partial derivatives

Vi =V, gk;

i (4.173)
VJ =V |] 8
within the covariant derivatives result from Egs. (2.208, 2.201) in
Vi|; = Vki — Fj.v~;
: b (4.174)

vk |j = v];. + Fj]-‘ivi
Substituting Eq. (4.173) into Eq. (4.171), the strain tensor components of the
Cauchy’s strain tensor y can be rewritten as
1
Vg =58 Vit g Vit Vi-v))
1
= E(vk|jgk gt Vk|igk g+ Vl|in|jgk -g)
| . . 0 < (4.175)
= 5l 07 + vel; 05 + vilv |j5k)
1
=30

i|j+Vj|i+Vk|i'Vk |])
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The third term on the RHS of Eq. (4.175) is very small in the infinitesimal
deformation. Therefore, the components of the Cauchy’s strain tensor y become

1
Vi &~ g(Vi |j+Vj‘,-) (4.176)

Substituting Eq. (4.174) into Eq. (4.176) and using the symmetry of the Christoffel
symbols, the Cauchy’s tensor component can be written in the linear elasticity.

1
v = 5ij +via) = Tywe
1
= E(vj’i + Vi,]') — FJ]Fin (4177)
= 7;(q.ed.)

This result proves that the Cauchy’s strain tensor y is also symmetric.
As an example, the Cauchy’s strain tensor y can be written in a three-dimen-
sional space:

& Y2 Vi3
T=\71 e | =0y (4.178)
Y31 V32 €33

where ¢; are the normal strains; y; the shear strains of the second-order strain
tensor (matrix).

Note that the Christoffel symbols in Eq. (4.177) vanish in Cartesian coordinates
(x, v, z) in a three-dimensional space E>. Therefore, the normal and shear strains of
Eq. (4.178) can be computed as follows:

b= = =
oy oz
L (Ou Ov
szf(a_y—’—a):yyx b Ty Ta A
. @ a_w _ :>'Y— yyx syy yyz (179)
VyZ_Z(aZ—’_ay)_yzy Vaox sz &2z
(o o _
yxz_2<az+ax>_y7x

where u, v, and w are the vector components of the deformation vector v.
Similar to the principal stresses, the principal strains are invariants that are
independent of any chosen coordinate system. In this case, only the principal
strains (eigenvalues) exist in the principal directions (eigenvectors) of the principal
planes in which the shear strains equal zero.
The characteristic equation of the eigenvalues A of the strain tensor 7y results from

(7 — 2]y =0 for ij=123

. (4.180)
= det(y; — 201y =0
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There are three real roots of Eq. (4.180) for the principal strains (eigenvalues) in
the principal directions (eigenvectors).

},1 = &1, ),2 = &2, )v3 = &3 (4181)

The Cauchy’s strain tensor y can be written in the principal directions:

&1 0 0
Yy=10 & 0| =(g). (4.182)
0 0 &3

4.7.4 Constitutive Equations of Elasticity Laws

The constitutive equations describe the macroscopic responses resulting from the
internal characteristics of an individual material. The linear elasticity law of
materials shows the relation between the stress tensor T and strain tensor y in
general curvilinear coordinates of an N-dimensional space.

In general, the Hooke’s law is valid in the linear elasticity of material. As a
result, the stress tensor component is proportional to the strain tensor component in
the elasticity range of an individual material compared to the spring force that is
proportional to its displacement by a spring constant.

The Hooke’s law of the linear elasticity law is written as

i = g™y for i,j,k,1=1,2,...,N 4.183
1

where EY is the fourth-order elasticity tensor that only depends on the material
characteristics. The elasticity tensor has 81 components (=3%) in a three-dimen-
sional space; N* components in an N-dimensional space.

The elasticity tensor is a function of the elasticity modulus £ (Young’s mod-
ulus) and the Poisson’s ratio v (Green and Zerna 1968).

El]kl:#(glkg/[+gllg’k+(l2V)gl]gkl> (4184)

where p is the shear modulus (modulus of rigidity) that can be defined as

E

ST (4.185)

'u:

Some moduli of steels are mostly used in engineering applications:

e E ~ 212 GPa (low-alloy steels); 230 GPa (high-alloy steels);
e u ~ 0.385E...0.400F;
o y ~ (0.25...0.30 (most metals).
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According to the Hooke’s law, the elasticity equation results from Eqs. (4.183—
4.185) for i, j, k, I = 1,2,...,N.

2v

mg”'gk’) Vi (4.186)

2 — 'u(gikgjl + gl 4
The basic tensor equations of the linear elasticity theory comprise Eqs. (4.144),
(4.177), and (4.186):

ij i _mj Joim . sj )
T+ ;@™ + 1,7 =pi —f

1
7y = 5(vij + i) = Ty (4.187)

. L . 2v ..
i ik jl il jk ij Skl .
T N(g g +8¢8 +—(1—2v)gg )/k]~

4.8 Maxwell’s Equations of Electrodynamics

Maxwell’s equations are the fundamental equations for electrodynamics, tele-
communication technologies, quantum electrodynamics, and special and general
relativity theories. These space-time equations describe mutual interactions
between the charges, currents, electric, and magnetic fields in a matter.

The Maxwell’s equations of electromagnetism are a system of four inhomo-
geneous partial differential equations in four space—time dimensions (x, y, z, ) of
the electric field strength E, magnetic field density B, electric displacement D, and
magnetic field strength H (Griffiths 1999; Lawden 2002).

The Maxwell’s equations in a matter can be written in integral, differential, and
tensor equations using Eqs. (4.31, 4.33) and SI units. The tensor equations with
physical components are formulated in an orthogonal coordinate system.

o Gauss’s law for electric fields:

7{ D - ndA = genc (Integral equation) (4.188a)
s
V - D = p (Differential equation) (4.188b)
10 ; .
e (JD') = p (Tensor equation) (4.188c¢)
u

10 ( DY
-— <J —> = p (Tensor equation with physical components) (4.188d)
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o Gauss’s law for magnetic fields:

jl{ B - ndA = 0 (Integral equation)
s

V - B = 0 (Differential equation)

10 .
Joui (JB') = 0 (Tensor equation)

10 B
e <J h_z> = 0 (Tensor equation with physical comp.)

e Faraday’s law:

d
]{ E-dl= ~% / B - ndA (Integral equation)
c S

0B
VXE=— ™ (Differential equation)

i
R E = — o (Tensor equation)

1 0B*
(th,’; i~ hjEj*,k) =— nor (Tensor equation with physical comp.)

~i=

o Ampere-Maxwell law:

d
j{ H-dl = I + @ / D - ndA (Integral equation)
C S

oD
VxH=J+ en (Differential equation)

i

i ;oD .
e =T+ o (Tensor equation)

1 J% 10D
7 (th,’(k i~ thj*k) = + o (Tensor eq. with physical comp.)
where

n is the normal unit vector to the surface S;
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(4.189a)

(4.189b)

(4.189¢)

(4.189d)

(4.190a)

(4.190b)

(4.190c)

(4.190d)

(4.191a)

(4.191b)

(4.191c)

(4.191d)

ace—time-enclosed electric charge;
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p (r, 1) is the four-dimensional space—time electric charge volumetric density;
Lo (r, ) is the four-dimensional space—time-enclosed electric current:

J (@, 1) is the four-dimensional space—time electric current volumetric density;
J* is the physical component of J;

J is the Jacobian;

h; is the norm of the covariant basis g;.

Note that the Maxwell’s equations are invariant at the Lorentz transformation
(Landau and Lifshitz 1962). However, they will be studied in the four-dimensional
space—time manifold by the Poincaré transformation.

The electric displacement D is related to the electric field strength E by the
matter permittivity e&.

D =¢E (4.192)

in which & = 1/(uc?) is the matter permittivity; ¢ &~ 3 x 10® m/s is the light speed
in vacuum; p is the matter permeability (py = 4n % 1077 N/A? for vacuum).

Analogously, the relation between the magnetic field strength H and magnetic
field density B can be written as

B = uH (4.193)

where u is the matter permeability.

Taking curl (V x) of the curl Egs. (4.190a, 4.191a) and using the curl identity,
as given in Eq. (C.23), the homogenous wave equations for the electric and
magnetic field strengths of E and H in vacuum (i.e., without any source exists,
J = p = 0) can be derived in

2
E
667 —VE=0 (4.194)
2
H
667 ~VH =0 (4.195)

where c is the propagating speed of the electromagnetic waves in vacuum, which
equals the light speed.

1
c= =2.998 x 108 ms™! (4.196)

v/ Moo

with o = 41 x 1077 N/A? (H/m); & = 8.85 x 107'2 C*/(N m?).

Therefore, Maxwell postulated that light is induced by the electromagnetic
disturbance propagated through the field according to the electromagnetic laws.
Furthermore, the law of conservation of the four-current density vector J is similar
to the continuity equation of fluid dynamics, as given in Eq. (4.93).
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Op(r, 1)
ot

+V-J(r,) =0 (4.197)

In the following section, the Maxwell’s equations can be expressed in the
space—time manifold in which the Einstein special relativity theory has been
usually formulated. The space—time coordinates can be defined by Poincaré in the
Minkowski space where three real space dimensions in Euclidean space of x, y,
and z are combined with a single time dimension 7 to generate a four-dimensional
space—time manifold with a fourth imaginary dimension of x* = jct in the Poin-
caré group (Lawden 2002; Landau and Lifshitz 1962). The coordinates of this
four-dimensional space-time are called the pseudo-Euclidean coordinates that can
be written as

=x; =y, ¥=z r=vV-leaa=jou (4.198)

Thus, the skew-symmetric tensor components Fy; and Gy, of the electromagnetic
fields B and H are expressed in the pseudo-Euclidean coordinates fork, [ = 1,2, 3,4.

Fiy = B;; Fy3 = B F31 = By; Fy = jEi/c (4.199)
Gy = H;; Gos = Hy; G31 = Hy; Gy = jeDy ’
Similarly, the four-current density vector J can be defined as
Ji =J;
_ )=
J= 5= 1. (4.200)
Jy =jep =+ —1lcp

According to Egs. (4.192, 4.193, 4.196), the relation between Gy and Fy; in
Eq. (4.199) for vacuum results in

F
Gy =2 (4.201)

Ho

Therefore, the first and fourth inhomogeneous Maxwell’s Eqgs. (4.188a, 4.191a)
can be expressed in the tensor equation of Gy,.

oG,
Rl Gui=Jr =

oxt
v (4.202)
WEFkl,l:/‘OJk for k,l=1,2,3,4

ol LElUMN Zyl_i.lbl
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Thus, Eq. (4.202) can be written in the four-dimensional space—time
coordinates:

(OF;, OF;3  OFi4 7
a2 o | ae ol
OF 0Fy  0Fy
8x1 * 6x3 * 8x4 - MOJZ (4203)
OF3  OF3  OFs 7
a2 o B
OF4 | OFyp  OFs 7
\ Ox! o2 o Mol

Similarly, the second and third homogenous Maxwell’s Eqgs. (4.189a, 4.190a)
can be written in the tensor equation of Fy,.

%_FaFJ_i_aF_mk:
o Tttt = (4.204)
Fkl,m+Flm,k+ka,l:O for k,llm=1,2,3,4

where the covariant electromagnetic field tensors can be defined by Lawden (2002).

0 B. -B, —jEJc
~B. 0 B, —jEjc
B, -B, 0 —jE./c
JE:/c JEy/c JE.[c 0

Fy= (4.205)

Equation (4.204) can be written in the four-dimensional space—time

coordinates:

(
0Fy  OF3  OF;p 0
Ox! ox2 o3
OF3, OFyp  OFy 0
R (4.206)
O0Fy  OF;3  OF3
ox3 ot ol
OF)y  OFy  OFy

(e T T 0

The potential vector A(r, #) can be defined as a potential scalar ¢.

A=A,

(4.207)
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The skew-symmetric electromagnetic field tensor component F,; can be written
in the potential vector components.

[ 0A;, 04
Mo ok (4.208)
:Ak,l _Al,k for k,l: 1,2,3,4

Substituting Egs. (4.202, 4.204, 4.208), the Maxwell’s equations can be
expressed in the potential vector A.

’ (4.209)
= —uyJr for k,1=1,2,3,4

Using Egs. (4.199, 4.208), the magnetic field strength H can be rewritten in the
potential vector A.

B=uH=VxA (4.210)

Using Faraday’s law, the electric field strength E can be expressed in the
potential vector A and the potential scalar ¢.

A
E=-V¢-— aa_t (4.211)

In the Lorenz gauge, the relation between the potential scalar and vector can be
written as (Lawden 2002).

1 94
—-— -A=0 4.212
c ot v ( )

Using Maxwell’s equations and product rules of vector calculus, the wave
equations of the potential scalar and vector result in

13% p
2 - =
V- o= (4.213)

1 0°A
VA — agp = ol (4.214)
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4.9 Einstein Field Equations

Einstein field equations (EFE) in vacuum are the fundamental equations in the
general relativity theory. They describe the interactions between the gravitational
field, physical characteristics of matters, and energy momentum tensor (Landau
and Lifshitz 1962). All tensors using in the general relativity theory have been
mostly written in the abstract index notation defined by Penrose (2005). This index
notation uses the indices to express the tensor types rather than their covariant
components in the basis {g'}

According to Eqgs. (2.250a, 2.251) and using the tensor contraction laws, the
Einstein tensor can be written in the covariant tensor components.

G = gxGy
1
= ik (Rj.‘ - 55]’.‘1'6)
1
=Ry — ggin

Therefore, the Einstein field equations can be expressed as

1 8nG

where

G; is the covariant Einstein tensor in Eq. (2.251);
R; s the Ricci tensor in Eq. (2.242);

g 1s the covariant metric tensor components;

R is the Ricci curvature tensor in Eq. (2.248);

G is the universal gravitational constant (= 6.673 x 10~"' N m*/kg?);
¢ s the light speed (~3 x 10® m/s);

T; is the kinetic energy-momentum tensor.

The kinetic energy-momentum tensor in vacuum can be calculated from the
cosmological constant A and the covariant metric tensor components g;;.

—Ac*

Tj=——=8i
I 780G

(4.216)
in which the cosmological constant is equivalent to an energy density in a vacuum
space. According to a recent measurement, the cosmological constant A is on the
order of 107> m~2 and proportional to the dark-energy density p with a factor of
8nG used in the general relativity.
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A =8nGp (4.217)

In the case of a positive energy density of the vacuum space (A > 0), the
related negative pressure will cause an accelerating expansion of the universe.

In relativity electromagnetism, the kinetic energy-momentum tensor 7;; can be
calculated from the energy-momentum tensor of the electromagnetic field §;
(electromagnetic stress-energy tensor) according to (Lawden 2002).

1 1
Ty =Sj=— <Fiijk - Zéiijlel> (4.218)
Ho

in which ¢, is the Kronecker delta.
Substituting Eq. (4.218) into Eq. (4.215), the Einstein—Maxwell equations can
be generally written with the cosmological constant A.

1

=R; — (%R + A)gij
817G (4.219)
= — —4 Tl"
c
8nG
= a

1
FyFy —=~0;FuF
Cllo( Kl jic = 70iil %)

where R is the Ricci curvature tensor can be obtained according to Egs. (2.248,2.249).

R = Ryg"
2 oI . 4.220
_ (®ng) 10UTE) L g (4.220)
Ou'dw/ J Oum mem

The Ricci curvature tensor can be expressed in the kinetic energy-momentum
tensor T (Cahill 2013):

R=""CZr =" (4.221)

The covariant electromagnetic field tensors Fj; in Eq. (4.219) are given
according to Eq. (4.205).

0 B. -B, —jE/Jc

—B. 0 B, —jEjc

B, -B, 0 —jE./c
JE:/c JEy/c JE.[c 0

Fy = (4.222)

where E is the electric field strength; B is the magnetic field density; c is the light
speed in vacuum.
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4.10 Schwarzschild’s Solution of the Einstein Field
Equations

In the case of ignoring the cosmological constant A and the negligibly small
energy-momentum tensor (7;; = 0) in an empty space of small scales (R = 0), the
Einstein field equation in Eq. (4.219) can be written in a simple tensor equation as

Rj=0 (4.223)

The Schwarzschild’s solution of Eq. (4.223) can be derived for a spherically
symmetric empty space with spherical coordinates (7, ¢, 0) outside an object with
a mass M (Cahill 2013; Susskind and Lindesay 2005).

The purely imaginary distance ds along a curve C in the spherical space can be
written as

ds* = —2de?
= gudx'dx’
= —guc’dr’ + g, dr’ + r2dQ’ (4.224a)
2MG 2MG\ !
=—(1-==)c%d+(1— dr? 4 r}(d¢? + sin? $d6?)
c2r cr
Therefore,

2MG 1 2MG\ ! 2
de® = (1 -5 )dt2 -= (1 - ) dr? — r—z(d</)2 4 sin? pd0*) (4.224b)
C

ctr c? c2r

in which

dr is the proper time (intrinsic time) unaffected by any gravitational field;

is the apparent time (ordinary time) affected by a gravitational field in a rest
frame of the observer. Generally, df > dt due to gravitational time dilation;
=d¢p? + sin’p do*;

is the radius of spherical coordinates (r, ¢, 0), as shown in Fig. 4.1;

is the universal gravitational constant (Newton’s constant);

is the object mass;

is the light speed.

ﬁgm\% 8—
[

Two singularities of the Schwarzschild’s solution in Eq. (4.224a) exist as the
space distance ds increases infinitely. Besides » = 0 (an unavoidable case), the
space metric coefficient must be

1
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Thus,

2MG

1 =0 (4.226)

cr
The Schwarzschild’s radius can be defined at the singularity by

2MG

> (4.227)

rg = Flg,—o0 =

The proper time dt without effect of any gravitational field results at r > r, i.e.,
the clock runs slower by the factor given in Eq. (4.228) when it comes near the
gravitation field (df > dt). This effect is called the gravitational time dilation
(Cahill 2013).

2M
dr</goodt = (1— 2G>dt<dt (4.228)
cr

According to Eq. (4.228), the ordinary time dr becomes infinite as r reaches the
Schwarzschild’s radius rg. The clock would stop running near the black hole
because dr goes to infinity.

1 1
= dr

> dr
V800 (1 — 20) (4.229)

2r

dr

= /g,dt — c0asr — rs.

4.11 Schwarzschild Black Hole

In the case of r < rg, the uncharged spherically symmetric dwarf star (neutron star)
with a mass M collapses within a cylinder of the radius r less than the
Schwarzschild’s radius rg. This cylinder is called the Schwarzschild black hole, as
shown in Fig. 4.11. According to Eq. (4.227), the Schwarzschild’s radius rg of the
sun is about 2.95 x 10° m compared to its radius R of 6.95 x 10® m (approxi-
mately 235,000 times larger than rg). Therefore, our Sun with the mass m ~ R’
would produce a huge energy E = mc? before it disappears into the black hole in
the very far future.

Using the Hamiltonian H consisting of the generalized momentum p;, active
variable ¢;, and the Lagrangian L, the total conserved energy of the photon tra-
jectory in the gravitational field is calculated (Susskind 2012).
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Fig. 4.11 Total energy of photons in the gravitational field of a curved space

: oL\ . :
H(qi.pint) =Y pigi—L= (@)qz — L(gi, gi» 1)

1

=T+V
P (4.230)
=—+V
o T V(@)
1 2MG
= EP X — 1 — 5
r c’r
where
the Lagrangian L is defined as
L=T-V,

the generalized momentum and active variable can be written as

_6L.
pi_aqi7

o
_api.

gi
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In fact, the Hamiltonian is the total conserved energy of the kinetic and
potential energy T and V of the system. Differentiating Eq. (4.230) with respect to
r and calculating the second derivative at the extreme, the radius rp results as the
maximum energy of the photon trajectory occurs at the negative second derivative.

oE, 0 (1 [_2MG\ _
or x or\r cr |
3MG 3

Srp="——=crg
c? 2

(4.231)

The maximum energy can be calculated at r = rp, as shown in Fig. 4.11.

c?

L[ G
~3V3MG
-

EP,max [0 ; 1

(4.232)

ctr
.

The photon with the maximum energy at the radius rp locates in a bi-stable
state. Through a small disturbance at this bi-stable state, either the photon tra-
jectory is rejected outwards the photon sphere (r > rp) or attracted toward the
black hole (r — rg) in order to reach the stable state of minimum energy, as shown
in Fig. 4.11. The sphere with the radius of rp = (3/2) ryis called the photon sphere
of the gravitational field. Furthermore, the photon energy equals zero at the
Schwarzschild’s radius rg according to Egs. (4.227 and 4.230).

Considering a photon moving from the outside (» > rp) near to the photon
sphere, the photon energy reaches a maximum at r = rp. Between the photon
sphere and the black hole (rg < r < rp), the photon energy reduces from the
maximum to zero at the Schwarzschild’s radius rg of the black hole. If the photon
trajectory (light beam) moves outside the photon sphere, the photon trajectory is
accelerated with a bending radius around the black hole, as shown in Fig. 4.11. In
another case, the photon trajectory enters the photon sphere with a velocity vp.

There are two possibilities for the light beam depending on the moving
direction of vp (Susskind 2012). Firstly, if the velocity vp is tangent to the photon
sphere surface, the light beam moves on the photon sphere surface in a stable
condition. Secondly, if the radial component of vp» moves toward the black hole
center (called the time line 7), the light beam becomes unstable and collapses itself
into the black hole after a number of cycles because the balance between the
energy created by the strong force and gravitational force fails. The energy of the
photon trajectory reduces to zero as it moves toward the black hole (r — rg) under
the very strong gravitational field of the black hole. This is to blame for the
attraction of the photon trajectory to the black hole. In this case, the light beam has
never came from the black hole back to the outside. The neutron star will be
contracted in an infinitesimal point particle in the black hole under its huge
gravitational field. Finally, the neutron star collapses in the black hole, crushing all
its atoms into a highly dense ball of neutrons.
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Appendix A
Relations Between Covariant
and Contravariant Bases

The contravariant basis vector g* of the curvilinear coordinate of u* at the point
P is perpendicular to the covariant bases g; and g;, as shown in Fig. A.1. This
contravariant basis g° can be defined as

k or Or

og -
u

where o is the scalar factor; gk is the contravariant basis of the curvilinear
coordinate of u*.

Multiplying Eq. (A.1) by the covariant basis g, the scalar factor o results in
(g x gj).gk = oc(gk.gk) = océi = (A2)
=a=(gxg) &= 8 8 &

The scalar triple product of the covariant bases can be written as

v=g,8,8] = (8 x &) - &=veg=J (A.3)

where Jacobian J is the determinant of the covariant basis tensor G.

The direction of the cross product vector in Eq. (A.1) is opposite if the dummy
indices are interchanged with each other in Einstein summation convention.
Therefore, the Levi-Civita permutation symbols (pseudo-tensor components) can
be used in expression of the contravariant basis.

veg =Jg =g xg)=—(g x g)
k_ ek (g X gj) _ ek (g ¥ gj) (A4)
NS J

where the Levi-Civita permutation symbols are defined by

+1 if (i,j,k) is an even permutation;

gjp = —1 if (i,j,k)is an odd permutation;
0 ifi=j ori=k orj=k (A.5)
1,. . . . ..
@Sykzi(l—])-(]—k)-(k—l) for i,j,k=1,2,3
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Fig. A.1 Covariant and g5 3
contravariant bases of
curvilinear coordinates

Thus, the cross product of the covariant bases g; and g; results from Eq. (A.4):

(8 x &) = euv/28 = &g’ = &g
k 8ijk(gi X gj) Aijk
=g =—-—"=:(gxg) (A.6)
g Y
= e = (8 X )&
The covariant permutation symbols in Eq. (A.6) can be defined as

+y/g if (i,j,k)isaneven permutation;
gk = { —/& if (i,j,k)isanodd permutation; (A7)
0 if i=j ori=kjorj=k

The contravariant permutation symbols in Eq. (A.6) can be defined as

) + ﬁ if (i,j, k) is an even permutation;
gk = ¢ _ ﬁ if (i,j, k) is an odd permutation; (A.8)
0 if i=jori=k;orj=k

The covariant basis vector g of the curvilinear coordinate of u¥ at the point P is
perpendicular to the contravariant bases g’ and g’ as shown in Fig. A.1. Therefore,

the cross product of the contravariant bases g’ and g’ can be written as

ljk Eijk le
—F—8 = _gk =&7g
vg (A.9)
= = (g x g/)g'

(g xg)=

Thus, the covariant basis results from Eq. (A.9):

g = e/ (8 x &) = epd (g x /)

Ve (A.10)
= (g x g’)

Obviously, there are some relations between the covariant and contravariant
permutation symbols:

&% = 1 (no summation)
ik (A.11)
&ijx = &"*J° (no summation)
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The tensor product of the covariant and contravariant permutation pseudo-
tensors is a sixth-order tensor.

) ) +1;  (i,j,k) and ({,m, n) even permutation;
B = 5;{’;, =< —1; (i,j,k)and (I,m,n) odd permutation; (A.12)
0; otherwise

The sixth-order Kronecker tensor can be written in the determinant form:

5 o o
Aijks ijk i j j
g = S0 = 5,11: 5% 5}{ (A.13)
5p 5q 0,
Using the tensor contraction rules with k = r, one obtains
) ) 5;, 5; o, 5; 5; 0,
Opg = Opr = |3, & O]\ =1|0, 0y 0]
51’, 5; o, 0O 0 1 (A.14)
Al ij 5 9 isi_sisi
= &g, =0,, =1 5 5 = 0,0, — 0,0,
r %4
Further contraction of Eq. (A.14) with j = g gives
gag = 05169 — 5154
S (a15)
=5P5q—5p=25p—5p=5p fori,p=1,2

From Eq. (A.15), the next contraction with i = p gives

&8y, = &) (summation overp) (A16)
=51 +5§=2 forp=1,2

Similarly, contracting Eq. (A.13) with k = r; j = ¢, one has for a three-
dimensional space.

g, = o 51 — 515!
A . (A.17)
= 0,08 — 6, =30, —6,=26, fori,p=1,2,3
Contracting Eq. (A.17) with i = p, one obtains
&8,y = 28, (summation over p)
=2(8; + 05 + &3)

(A.18)
=2(1+1+41)=6 forp=1,2,3
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The covariant metric tensor M can be written as

811 812 813
M= g1 g» & (A.19)
831 832 &§33

where the covariant metric coefficients are defined by g; = g; - g;.
The contravariant metric coefficients in the contravariant metric tensor M~
result from inverting the covariant metric tensor M.

. § & 8
M= |g" gzz g% (A.20)
g31 g3 33

where the contravariant metric coefficients are defined by g¥ = g’ - g/.
Thus, the relation between the covariant and contravariant metric coefficients
can be written as

gikgkj = gkjgik = 5,’: sMM=MM'=1 (A.21)
In the case of i # j, all terms of gikgkj equal zero. Thus, only nine terms of g*g,;
for i = j remain in a three-dimensional space R’:
g =g"en + g% g + &g forik=1,2,3
=61+ +063 =0 fori=1,2,3 (A22)
=14+14+1=3

The relation between the covariant and contravariant bases in the general
curvilinear coordinates results in

gi'gj.: gy = o fori=j
—gg=-gg+ee ey fori=123 (A.23)
= g*gi = 0 fori,k =1,2,3

According to Eq. (A.23), nine terms of g”‘gki for k = 1, 2, 3 result in
g' g =g"%eu =¢"g1+g"gn+8"¢ = 5} fori=1;
g g =g"g=0"8n+8%mn+g"gn = 5% for i = 2; (A.24)
g3 ‘83 = gSkgk3 = g31g13 + g32g23 + g33g33 = 5% fori = 3.

The scalar product of the covariant and contravariant bases gives

(@)

cos(g",g.)

g gy =g ‘g(n
= /g - /&G cos(g”, gu) =1

where the index (i) means no summation is carried out over i.

ol LElUMN Zyl_i.lbl

(A.25)
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Equation (A.25) indicates that the product of the covariant and contravariant
basis norms generally does not equal one in the curvilinear coordinates.

1

> A26
cos(g", g;) (426

gli) . Ve =

In orthogonal coordinate systems, g is parallel to g;,. Therefore, Eq. (A.26)
becomes

3 - 1 1
) hi




Appendix B
Physical Components of Tensors

The physical component of a tensor can be defined as the tensor component on its
unitary covariant basis. Therefore, the covariant basis of the general curvilinear
coordinates has to be normalized.

Dividing the covariant basis by its vector length, the unitary covariant basis
(covariant-normalized basis) results in

* gi 8i
gi = —— =
|g;] 8(ii)

=g =1 (B.1a)

The covariant basis norm Ig;l can be considered as a scale factor s; without
summation over (i).

hi =gl = /&) (B.1b)

Thus, the covariant basis can be related to its unitary covariant basis by the
relation

g = e = hg (B.2)

The contravariant basis can be related to its unitary covariant basis using Egs.
(2.47 and B.2).

g =g'g =g¢'hg (B.3)
The contravariant second-order tensor can be written in the unitary covariant
bases using Eq. (B.2).
T="T'gg = (T"hihy) g8 =T"g} g (B.4)
Thus, the physical contravariant tensor components denoted by star result in
T = hihy TV (B.5)
The covariant second-order tensor can be written in the unitary contravariant

bases using Eq. (B.3).

T = T;g'e’ = (Tyg" ' hhi) gig) = T, g8 (B.6)
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Similarly, the physical covariant tensor components denoted by star result in
T, = g" ' T; (B.7)

The mixed tensors can be written in the unitary covariant bases using Eqs. (B.2
and B.3)

T= T;gigj = ﬁgi(gikgk)
= T} (hig;) (" hugy)
= (T}g"hilv)g; g,
= (T))'g/g
Thus, the physical mixed tensor components denoted by star result in
(T})" = &"hiT; (B.9)
Analogously, the contravariant vector can be written using Eq. (B.2).
v=vg = (Vihi)g;
g VT (B.10)
=v g = h_igi

Thus, the physical component of the contravariant vector v on the unitary basis
g; is defined as

V= hy' = g (B.11)

The contravariant basis can be normalized dividing by its vector length without
summation over ().

4 g
gl="r =2 B.12
(4 gl (B.12)

where g is the contravariant metric coefficient that results from Eq. (A.20).
Using Eq. (B.12), the covariant vector v can be written as

v=vg = v\ /glg? =vigH (B.13)
Thus, the physical component of the covariant vector v results in

vi = vy /gl (B.14)

According to Eq. (A.27), Eq. (B.14) can be rewritten in orthogonal coordinate
systems:

(B.15)
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Using Eq. (B.3), the covariant vector can be written in
v=vig = vigijgj
= (vig"hj)gj = v/ g (B.16)
v*

J ol
in 8
g'h;

Thus, the physical contravariant vector component of v on the unitary basis g;
can be defined as

Vi = g'h; (B.17)

Furthermore, the vector v can be written in both covariant and contravariant
bases.

el i
V=vg =ve;

= (ngj)'gk = (Vigi)'gk

. . (B.18)
= ;0] = V'gi
= v = Vg
Interchanging i with j and k with 7, one obtains
vi =v/g; (B.19)
Only in orthogonal coordinate systems, we have
8 =0 fori#j: gu) = h,2 (B.20)
Thus, one obtains from Eq. (B.19)
vi=vigi=v'gn +vign+- + Vg (B.21)

=vigu) = v'h

Substituting Eq. (B.11) into Eq. (B.21), one obtains Eq. (B.22) that is equivalent
to Eq. (B.15).

Vi = Vlhlz = (%) hlz = hiv*i (B.22)
i




Appendix C
Nabla Operators

Some useful Nabla operators are listed in Cartesian and general curvilinear
coordinates:

1. Gradient of an invariant f

e Cartesian coordinate {x'}

o o O
Vf=aex+a—yey+a—zez (Cl)
e General curvilinear coordinate {u'}
6f ;of
Vf =fig ” ' = ——gg; (C.2)
2. Gradient of a vector v
e General curvilinear coordinate {u'}
Vv = (vkl + vjl“g-) gkgi = vk|igkgi (©3)
= (i —vlp)g'e = vl g'e
3. Divergence of a vector v
e Cartesian coordinate {x'}
vy Oy, O,
-V = —_— C4
V-v ™ + N + = & (C4)
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e General curvilinear coordinate {u'}
Vv =vi|= (vfi + vjl";j)
~19(v)
J Oui
Vv =wlig" = (i —vTj)g" - g

=J' )

i
i
4. Gradient of a second-order tensor T
e General curvilinear coordinate {1’} for a covariant second-order tensor
VT = (Tys — DTy — DiTin)g'g'g" )
= Tylig'g'g"

e General curvilinear coordinate {u'} for a contravariant second-order tensor

VT = (T} + T, T + T, ") gig,"

.. (C7)
= Tl]|kgigjgk
e General curvilinear coordinate {u'} for a mixed second-order tensor
VT = (T} + T, T} = ThT, )gg'e" -

= T/igg's"

5. Divergence of a second-order tensor T
e General curvilinear coordinate {u'} for a covariant second-order tensor
V.T = (Tij,k — F?;ij — F;’]:Tlm)gl(gjgk)

= Tjlig'g

e General curvilinear coordinate {u'} for a contravariant second-order tensor

(C.9)

VT = (T} +T,,T"+T},T"™)g
= (T4 4T}, T +T},T™)g, (C.10)
= Tij|igj

e General curvilinear coordinate {u'} for a mixed second-order tensor

VT = (T}, + T, T =TT, )0/e’
= (T}, + 10,1 = TiTh)g! (C.11)
=Tlg' = T;|ig’kgk
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6. Curl of a vector v

e Cartesian coordinate {x'}

e, e e
— a a Q

Vxv=|g & & (c12)
Ve vy Vg

The curl of v results from calculating the determinant of Eq. (C.12).

. aVz avy vy avz Gvy v,
va_(@y aZ>ex+<6z ox e + ox 0y € (C.13)

e General curvilinear coordinate {u'}

V x v =ty g (C.14)

The contravariant permutation symbol is defined by

) +J~! if (i,j, k) is an even permutation;
gk = ¢ —J=' if (i,j, k) is an odd permutation; (C.15)
0 ifi=j ori=k;orj=k

where J is the Jacobian.

7. Laplacian of an invariant f

e Cartesian coordinate {x'}

o
=N =L+ L4~ .
Vf \f ) + o T oz (C.16)
e General curvilinear coordinate {u'}
V2f = Af = (fi — fxT5)g"
A \f = (fij — [ l])g (C.17)

= (vij — vkrg)g"j =y |jg’7

where the covariant vector component and its covariant derivative with
respect to u* are defined by

of o o’f

i’

vi=fi= Ve =fr =g Vis=li =557 (C.18)
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8. Calculation rules of the Nabla operators
DivGradf = V - (Vf) = V*f = Af (Laplacian)
CurlGradf =V x (Vf) =0
DivCurlv=V - (Vxv)=0
A(fg) =fAg +2Vf - Vg + gAf
Curl Curl v =V x (V x v) = V(V - v) — Av(Curl identity)

(C.19)
(C.20)
(C21)
(C.22)
(C.23)

The Laplacian of v in Eq. (C.23) is computed in the tensor formulation for

general curvilinear coordinates.

Div Grad v = Laplacian v = Av
=V-(Vv) =V
=0 |J'J< - |Pr5;c + vpljrivk)gikgi
= |jkgj kgi

(C.24)
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Essential Tensors

Derivative of the covariant basis
k
8gij — rijgk (D.1)
Derivative of the contravariant basis

. 6gi . .
gf,- = = jl'kgk = _th'kgk (D.2)

Derivative of the covariant metric coefficient
8iik = Tigp + T8pi (D.3)

First-kind Christoffel symbol

1
Uije = 5(8ij + &iki — 8ijk) = gul;

. M (D.4)
= Flj =g Fijk
Second-kind Christoffel symbol based on the covariant basis
=g, g =¢"Ty (D.5)
ot O’
k k
Yo OxP Ou'Ou/ st (D-6)
1
T = 875(8is + 8ini = i) (D.7)
. 1oJ  9(lnJ)
== — D.8
v Jou ou/ (D.8)
Second-kind Christoffel symbol based on the contravariant basis
rj,=-rj,=T} (D.9)
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Covariant derivative of covariant first-order tensors
k
T =T, —-TiTi =T, g (D.10)
Covariant derivative of contravariant first-order tensors

T =T, +T,T" =T, ¢ (D.11)

Covariant derivative of covariant and contravariant second-order tensors

Tijle = Tijx — Ty T — T Tim

N p ) . o (D.12)
T, = ch + I, "+ 1, T"
Covariant derivative of mixed second-order tensors
Tk = Ty + DT = T4T, o)

T/l = T} + T, T/ — T}T,,
Second covariant derivative of covariant first-order tensors
Tilij = Tij — U T — Ui T
— F;;’Tm’k + Fg.‘l"fnkT,, (D.14)
— F;-ZTi,m + F]’-ZF;’mT "

Second covariant derivative of the contravariant vector

V|im = vk|17m - vk}pl"‘l’m + vp|1F’I§m (D.15)
where
vkll,m = (vk|l)7mz v{‘,m + v:’ml"ﬁl + V”Fﬁl,m (D.16)
vk|p = v{;, + v"l"ﬁp (D.17)
W) =V, T (D.18)
Riemann—Christoffel tensor
Ry =15, — T + TR, — TR, (D.19)

Riemann curvature tensor

Rijjic = gnRiy (D.20)
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First-kind Ricci tensor

k k
i = % - % — II% + TR T,
_ az(an) - 16(]1“5) Lt
oudu/ J Ouk k=1
Second-kind Ricci tensor
Ri = g"Ry
(S )

Ricci curvature

(@(nJ) 10(JT)
/) _ - y k r
k=g <aui6uf J ouk Ty

Einstein tensor
i i 1 ik '
G]’- = RJ’- - EéfR = 8" Gy
1
G = gikGJ'-‘ = Rj — 38R
i
Gj’i_ 0

First fundamental form

I = Edu? + 2Fdudv + Gdv?;

M = (g;) = E F r,r, r,r,
8= 6| T r,r, TI,r,

Second fundamental form

II = Ldu? + 2Mdudv + Ndv?*;

H:(h,-j)z[

M N r,n r,n

Gaussian curvature of a curvilinear surface

LN — M? _ det(hy)
EG —F2  det(gy)

K= K1Ky =

Mean curvature of a curvilinear surface

EN — 2MF + LG
2(EG — F?)

H= %(K1+K2):

L M} B [ruun rwn]
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(D.21)

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)
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Unit normal vector of a curvilinear surface

g1 X I, XTIy, r, Xr,
= = = D.30
g1 x &| \/det(gy) VEG — F? ( )

Differential of a surface area
dA = |g; x gy|dudv = \ 811822 — (glz)zdud" (D31)
= y/det(g;)dudv = VEG — F?>dudv

Gauss derivative equations

g,= FEgk + hijgs = Fﬁ;gk + hjn

. (D.32)
< gl =g, — '8 =hyn
Weingarten’s equations
n; = —hlg; = —(hig")g; (D.33)
Codazzi’s equations
Kijx = Kij = (Ko = K15 Koo =Knj) (D.34)

Gauss equations

K = det (K!) = (K!K3 — KIK3)
_ KuKk» — K3, _Ron (D.35)

811822 — g%z 8




Appendix E
Euclidean and Riemannian Manifolds

In the following appendix, we summarize fundamental notations and basic results
from vector analysis in Euclidean and Riemannian manifolds. This section can be
written informally and is intended to remind the reader of some fundamentals of
vector analysis in general curvilinear coordinates. For the sake of simplicity, we
abstain from being mathematically rigorous. Therefore, we recommend some
literature given in References for the mathematically interested reader.

E.1 N-dimensional Euclidean Manifold

N-dimensional Euclidean manifold EV can be represented by two kinds of
coordinate systems: Cartesian (orthonormal) and curvilinear (non-orthogonal)
coordinate systems with N dimensions. Lines, curves, and surfaces can be
considered as subsets of Euclidean manifold. Two lines or two curves can generate
a flat (planes) and curvilinear surface (cylindrical and spherical surfaces),
respectively. Both kinds of surfaces can be embedded in Euclidean space.

E.1.1 Vector in Cartesian Coordinates

Cartesian coordinates are an orthonormal coordinate system in which the bases
(i, j, k) are mutually perpendicular (orthogonal) and unitary (normalized vector
length). The orthonormal bases (i, j, k) are fixed in Cartesian coordinates. Any
vector could be described by its components and the relating bases in Cartesian
coordinates.

The vector r can be written in Euclidean space E* (three-dimensional space) in
Cartesian coordinates (cf. Fig. E.1).

r=xi+yj+zk (E.1)
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Fig. E.1 Vector r in z
Cartesian coordinates z

zk
r
zk
k -
0 Yl y
4 ! // y
(A e
X (xi+yj)

Fig. E.2 Bases of the
curvilinear coordinates

where
X, ¥ 2 are the vector components in the coordinate system (x, y, 2);
ik are the orthonormal bases of the corresponding coordinates.

The vector length of r can be computed using the Pythagorean theorem as

r|=vx2 +y> +22>0 (E.2)

E.1.2 Vector in Curvilinear Coordinates

We consider a curvilinear coordinate system (ul, uz, u3) of Euclidean space E3,
i.e., a coordinate system which is generally non-orthogonal and non-unitary (non-
orthonormal basis). By abuse of notation, we denote the basis vector simply basis.

In other words, the bases are not mutually perpendicular and their vector
lengths are not equal to one (Klingbeil 1966; Nayak 2012). In the curvilinear
coordinate system (ul, u2, u3), there are three covariant bases g;, g,, and gz and
three contravariant bases gl, g2, and g3 at the origin (/, as shown in Fig. E.2.
Generally, the origin 0" of the curvilinear coordinates could move everywhere in
Euclidean space; therefore, the bases of the curvilinear coordinates only depend on
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each considered origin 0'. For this reason, the bases are not fixed in the whole
curvilinear coordinates such as in Cartesian coordinates, as displayed in Fig. E.1.

The vector r of the point P(ul, u2, u3) can be written in the covariant and
contravariant bases:

r=u'g +u’g, +i'g,

E.3)
1 2 3 (
=u1g +uxg” + usg
where
1 2 3 . .
u,u,u are the vector contravariant components of the coordinates (ul, uz, u3);
g1, 82, 83 are the covariant bases of the coordinate system (ul, uz, u3);
Uy, U, U3 are the vector covariant components of the coordinates (ul, uz, u3);
1 2 3 . .
g£,.8,.8 are the contravariant bases of the coordinate system (ul, uz, u ).

The covariant basis g; can be defined as the tangential vector to the
corresponding curvilinear coordinate u' for i = 1, 2, 3. Both bases g; and g,
generate a tangential surface to the curvilinear surface (u'u?®) at the considered
origin 0/, as shown in Fig. E.2. Note that the basis g; is not perpendicular to the
bases g, and gs;. However, the contravariant basis g* is perpendicular to the
tangential surface (g;g,) at the origin 0'. Generally, the contravariant basis gk
results from the cross product of the other covariant bases (g; x g;).

ngt =g x g forijk=1723 (E.4a)
where « is a scalar factor (scalar triple product) given in Eq. (1.43).
o= (a; x aj)-a
(3 ) - (E.4b)
= [a;,a;,a]
Thus,

go BXE o BXE& 5 BXE (E.4c)

[21.8,,85] 81,88 81,8, 8]

E.1.3 Orthogonal and Orthonormal Coordinates

The coordinate system is called orthogonal if its bases are mutually perpendicular,
as displayed in Fig. E.1. The dot product of two orthonormal bases is defined as


http://dx.doi.org/10.1007/978-3-662-43444-4_1
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ij =i -[j] - cos(i,j)
= (1) (1) cos(3) (ES5)
=0
Thus,
i-j=i-k=j-k=0 (E.6)
If the length of each basis equals 1, the bases are unitary vectors.
li| = il = |k =1 (E.7)

If the coordinate system satisfies both conditions (E.6) and (E.7), it is called the
orthonormal coordinate system, which exists in Cartesian coordinates.
Therefore, the vector length in the orthonormal coordinate system results from

|r|2=r~r
= xi+yj+zk)- (xi+yj+zk)
=220 - i)+ xy(i - j) +xz(i - k) (E.8)

+yx(j 1)+ - §) +yz( - k)
+ 2x(k - i)+ zy(k - j) + 22(k - k)

Due to Eqgs. (E.6 and E.7), the vector length in Eq. (E.8) becomes

K=+ +2 =t =vV2+yY2+22 (E9)

The cross product (called vector product) of a pair of bases of the orthonormal
coordinate system is (informally) given by means of right-handed rule; that is, if
the right-hand fingers move in the rotating direction from the basis j to the basis kK,
the thumb will point in the direction of the basis i = j x k. The bases (i, j, k) form
a right-handed triple.

i=jxk=-k xj
j=kxi=-ixk (E.10)
k=ixj=-jxi

The cross product of two orthonormal bases can be defined as

i % 3l = [i] - |j] - sin(i. j)
= (1) (1)-sin(3) (E.11)
= k|
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Fig. E.3 Arc length ds of x3
P and Q in Cartesian 3
. XTr
coordinates o
P ds
I
Lar
r/ | Q
I
e; r +dr ©)
0 : x2
N I s
\\\ez : /// X2
1 \\ 1 //
X1 ___________ N
X!

Fig. E4 Arc length ds of
P and Q in the curvilinear
coordinates

E.1.4 Arc Length Between Two Points in a Euclidean Manifold

We consider two points P(x', X%, x*) and Q(x', %, x*) in Euclidean space E’ in
Cartesian and curvilinear coordinate systems, as shown in Figs. E.3 and E.4. Both
points P and Q have three components xl, x2, and x° in Cartesian coordinates (eq,
e, e3). To simplify some mathematically written expressions, the coordinates x, y,
and z in Cartesian coordinates can be transformed into xl, x2, and x3; the bases (i, j,
k) turn to (eq, e,, €3).

We now turn to the notation of the differential dr of a vector r. The differential
dr can be expressed using the Einstein summation convention (Klingbeil 1966;
Kay 2011):

dr = edx’ fori=1,2,3
3 .
=3 ear
i=1

The Einstein summation convention used in Eq. (E.12) indicates that dr equals
the sum of e; dx' by running the dummy index i from 1 to 3.

(E.12)
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The arc length ds between the points P and Q (cf. Fig. E.3) can be calculated by
the dot product of two differentials.

(ds)? = dr - dr
= (e;dx’) - (ejdx/
(eid) (.’ ). (E.13)
= (e,- . ej)dx’ - dx/
=dx'-dx' fori=1,2,3.
Thus, the arc length in the orthonormal coordinate system results in
=Vdx - dx fori=1,2,3.
(E.14)

— \/ dxl (dx?a)

The points P and Q have three components u', 4%, and u’ in the curvilinear
coordinate system with the basis (gl, gz, g3) in Euclidean 3-space, as displayed i in
Fig. E.4. The location vector r(u'u”u’) of the point P is a function of u’.
Therefore, the differential dr of the vector r can be rewritten in a linear
formulation of du'.

dr = ﬂ du’
Oou! (E.15)
= gdu’

where g; is the covariant basis of the curvilinear coordinate u'.
Analogously, the arc length ds between two points of and Q in the curvilinear
coordinate system can be calculated by

(ds)* = dr-dr
= (gidu') - (gydu’) (E.16)
= (g - g)du' - du’
=gjdx' - dx/ fori,j=1,2,3
Therefore,
ds =/ |gydx - dx/]
2 (E.17)
=5 = / 83, dr
f
where
t is the parameter in the curve C with the coordinate u'();

8ij is the defined as the metric coefficient of two non-orthonormal bases.
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Gi=8 &§=8 & =8 #0 (E-18)

It is obvious that the symmetric metric coefficients g;; vanish for any i # j in the
orthogonal bases because g; is perpendicular to g;; therefore, the metric tensor can
be rewritten as

_JOo ifi#j
8ij = {gii if i :] (E19)
In the orthonormal bases, the metric coefficients g; in Eq. (E.19) become
j 0 ifi#j
8ij = o] { 1 ifi=j (E.20)

where 5{ is called the Kronecker delta.

E.1.5 Bases of the Coordinates

The vector r can be rewritten in Cartesian coordinates of Euclidean space E>.
r=xe (E.21)
The differential dr results from Eq. (E.21) in

dr = e;dx’
_ ar & (E.22)
oxt
Thus, the orthonormal bases e; of the coordinate x' can be defined as
or )
€& =7 fori=1,2,3 (E.23)

Analogously, the basis of the curvilinear coordinate #' can be calculated in the
curvilinear coordinate system of E>.

0
g = fori=123 (E.24)

Substituting Eq. (E.24) into Eq. (E.18), we obtain the metric coefficients g;; that
are generally symmetric in Euclidean space; that is, g;; = gj:.




222

Appendix E: Euclidean and Riemannian Manifolds

Fig. E.5 Schematic g, g
visualization of the g
Gram—Schmidt procedure o

e, €

e, 82

gi=8 g =gi#0

e o (oo (oraw
T 0wl 0w/ \Oxm dul )\ Ox" ou
e e, (E25)
Cowow TV dwdw
Oxk oxk
—w% fork—1,2,3

According to Egs. (E.4a and E.4b), the contravariant basis g is perpendicular to
both covariant bases g; and g;. Additionally, the contravariant basis g is chosen
such that the vector length of the contravariant basis equals the inversed vector
length of its relating covariant basis; thus, g* - g, = 1. As a result, the scalar
products of the covariant and contravariant bases can be written in general
curvilinear coordinates (ul,..., uN).

k k k .
g =g -g =9, fori,k=1,2,...,N
{ g-g=¢¢ (E.26)

gi'gk:gik:gki;féé;c fori,k=1,2,...,N

E.1.6 Orthonormalizing a Non-orthonormal Basis

The basis {g;} is non-orthonormal in the curvilinear coordinates. Using the Gram—
Schmidt scheme (Griffiths 2005), an orthonormal basis (e, e,, €3) can be created
from the basis (g;, g, g3). The orthonormalization procedure of the basis (g, g,
g3) will be derived in this section; the orthonormalizing scheme is demonstrated in
Fig. ES.

The Gram—Schmidt scheme for N = 3 has three orthonormalization steps:

1. Normalize the first basis vector g; by dividing it by its length to get the
normalized basis e;.

_ 2
g |
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2. Project the basis g, onto the basis g; to get the projection vector g,,; on the
basis g;. The normalized basis e, results from subtracting the projection vector
g,/ from the basis g,. Then, iteratively, normalize this vector by dividing it by
its length to generate the basis e,.

& — % _ 8~ (g - el)e
gz—gz/l‘ |g2_ (gz' el)e1|

o

3. Subtract projections along the bases of e; and e, from the basis g3 and
normalize it to obtain the normalized basis e3.

e, — 3 B1 78 8 (8- er)er — (g - &)

g — 81— &) lgs — (8- er)e; — (g3 - e2)ey]

Using the Gram—Schmidt scheme, the orthonormal basis {e;, e,, e;} results
from the non-orthonormal bases {g;, g, g3}.
Generally, the orthogonal bases {ey, e,, ..., ey} for the N-dimensional space can

be generated from the non-orthonormal bases {g;, g, ..., gy} according to the
Gram-Schmidt scheme as follows:
v—1 )
ej— ~ i1 (g e)e forj=1,2,...,N
Zt—l ( ) i

E.1.7 Angle Between Two Vectors and Projected Vector
Component

The angle 6 between two vectors a and b can be defined by means of the scalar
product (Fig. E.6).

a-b g -gadb

cos ) = =
al - 1Bl Jal - b 27,
B gia'b’ B gya'b’ '
\/gija"af RV gklbkbl vV aia,- A/ bjbj
where
2
al"=a-a
2 (E.28)

ii i i .
=gjd'a’ = g'ajaj =a'a; fori,j=1,2,.. N
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Fig. E.6 Angle between two a(u')
vectors and projected vector
component

b(u')

a,= ‘a‘.cosB

in which
a', b/ are the contravariant vector components;
a;, b; are the covariant vector components;
8ij» g7 are the covariant and contravariant metric coefficients of the bases.

The projected component of the vector a on vector b results from its vector
length and Eq. (E.27).

ap = |al - cos 0
la[ - [b] —[b| (E:29)
~atbl
= 897 forijki=1,2,....N

\/ &ubkb!

Examples
Given two vectors a and b:

a=1-e +V3 e =dg;
b=1-€ +0-e =>blg
Thus, the relating vector components are

g1 =¢€; &=
ad=1, &=V3
b'=1; =0

The covariant metric coefficients g; in the orthonormal basis (e;, ;) can be
calculated according to Eq. (E.18).

y_[&un gu)_ (1 0
(&0) (g21 gzz) (0 1)

The angle 6 between two vectors results from Eq. (E.27).
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Fig. E.7 N tuples of Riemannian manifold R"
coordinates in Riemannian

manifold

8ija a'b’
COSH—W \/m fori,j k,l=1,2
. gna'b' + gpa'b* + gra*b' + gra*b?
(1-1-1)4+(0-1-0)+(0-/3-1)+(1-/3-0) 1
- VI+0+0+3-VI+0+0+0 "2
Therefore,

The projected vector component can be calculated according to Eq. (E.29).
gijaibj
ap = ——
\V gub !
(1114 (0-1:0)+(0-V3- 1)+ (1-/3-0)
v1+0+0+0

fori,j,k,1=1,2

=1

E.2 General N-dimensional Riemannian Manifold

The concept of the Riemannian geometry is a very important fundamental brick in
the modern physics of relativity and quantum field theories, theoretical elementary
particles physics, and string theory. In contrast to the homogenous Euclidean
manifold, the non-homogenous Riemannian manifold only contains a tuple of fiber
bundles of N arbitrary curvilinear coordinates of ul, ..., u". Bach of the fiber
bundle is related to a point and belongs to the N-dimensional differentiable
Riemannian manifold. In the case of the infinitesimally small fiber lengths in all
dimensions, the fiber bundle now becomes a single point. Therefore, the tuple of
fiber bundles becomes a tuple of points in the manifold. In fact, Riemannian
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manifold only contains a point tuple (Riemann 2013).

In turn, each point of the point tuple can move along a fiber bundle in
N arbitrary directions (dimensions) in the N-dimensional Riemannian manifold.
Generally, a hypersurface of the fiber bundle of curvilinear coordinates {u'} for
i=1, 2,..., N at a certain point can be defined as a differentiable (N — 1)-
dimensional subspace with a codimension of one. This definition can be
understood that the (N — 1)-dimensional subbundle of fibers moves along the
one-dimensional remaining fiber.

E.2.1 Point Tuple in Riemannian Manifold

We now consider an N-dimensional differentiable Riemannian manifold R" that
contains a tuple of points. In general, each point in the manifold locally has
N curvilinear coordinates of ul u" embedded at this point. Therefore, the
considered point P; can be expressed in the curvilinear coordinates as P, ...
u™). The notation of Riemannian manifold allows the local embedding of an
N-dimensional affine tangential manifold (called affine tangential vector space)
into the point P;, as displayed in Fig. E.7. The arc length between any two points
of N tuples of coordinates in the manifold does not physically change in any
chosen basis. However, its components are changed in the coordinate bases that
vary in the manifold. Therefore, these components must be taken into account in
the transformation between different curvilinear coordinate systems in Riemannian
manifold. To do that, each point in Riemannian manifold can be embedded with
the individual metric coefficients g;; for the relating point. Note that the metric
coefficients g;; of the coordinates (u', ..., u") at any point are symmetric, and they
totally have N* components in an N-dimensional manifold. That means one can
embed an affine tangential manifold EV at any point in Riemannian manifold R" in
which the metric coefficients g; could be only applied to this point and change
from one point to another point. However, the dot product (inner product) is not
valid any longer in the affine tangential manifold (Klingbeil 1966; Riemann 2013).

E.2.2 Flat and Curved Surfaces

By abuse of notation and by completely abstaining from mathematical
rigorousness, we introduce the notation of flat and curved surfaces. A surface in
Euclidean space is called flat if the sum of angles in any triangle ABC is equal to
180° or, alternatively, if the arc length between any two points fulfills the
condition in Eq. (E.13). Therefore, the flat surface is a plane in Euclidean space.
On the contrary, an arbitrary surface in a Riemannian manifold is called curved if
the angular sum in an arbitrary triangle ABC is not equal to 180°, as displayed in
Fig. E.8.
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Fig. E.8 Flat and curved (@) o +p+y=180° (b) o +B + 7y #180°
surfaces

Conditions for the flat and curved surfaces (Oeijord 2005):

(E.30)

o+ p+7y=180° for a flat surface
o+ f+7y#180° for a curved surface

Furthermore, the surface curvature in Riemannian manifold can be used to
determine the surface characteristics. Additionally, the line curvature is also
applied to studying the curve and surface characteristics.

E.2.3 Arc Length Between Two Points in Riemannian Manifold

We now consider a differentiable Riemannian manifold and calculate the arc

length between two points P(ul, e uN) and Q(ul, e uN). The arc length is an

important notation in Riemannian manifold theory. The coordinates @, ..., u™)

can be considered as a function of the parameter ¢ that varies from P(#;) to Q(,).
The arc length ds between the points P and Q thus results from

ds\? dr dr
— ) =—.— E.31
(dt) dr dt ( )
where the derivative of the vector r(ul, o uN) can be calculated as
E _ d(gu')
dr dr (E.32)

=gi'(t) fori=1,2,..,N

Substituting Eq. (E.32) into Eq. (E.31), one obtains the arc length
ds =\ [algiid) - (gi)di

=\/egu(t)u/(r)dt fori,j=1,2,....N

where ¢ (= 1) is the functional indicator that ensures the square root always
exists.

(E.33)

ol LElUMN Zyl_i.lbl
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Fig. E.9 Arc length between Riemannian surface S
two points in a Riemannian
surface

Euclidean
space E®

x!

Therefore, the arc length of PQ is given by integrating Eq. (E.33) from the
parameter #; to the parameter 7,.

15}
s:/ eguu(i(tr)dr fori,j=1,2,...,N (E.34)
n

where the covariant metric coefficients g; are defined by

8ij = 8- # 5z‘j
axk ) k (E35)

Y fork=1,2,...,N

Ou' Ou/

We now assume that the points P(ul,u2) and Q(ul,uz) lie on the Riemannian
surface S, which is embedded in Euclidean space E’. Each point on the surface
only depends on two parameterized curvilinear coordinates of u' and u* that are
called the Gaussian surface parameters, as shown in Fig. E.9.

The differential dr of the vector r can be rewritten in the coordinates (u', u?):

or .
dr = a—uldul
= ry,-dui

=adu’ fori=1,2

(E.36)

where a; is the tangential vector of the coordinate u' on the Riemannian surface.
Therefore, the arc length ds on the differentiable Riemannian parameterized
surface can be computed as
2
(ds)” =dr-dr
=a; - ajduiduj (E37)

= aijduiduj fori,j=1,2
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whereas a;; are the surface metric coefficients only at the point P in the coordinates
(u', u?) on the Riemannian curved surface S. The formulation of (ds)? in Eq. (E.37)
is called the first fundamental form for the intrinsic geometry of Riemannian
manifold (Springer 2012; Lang 1999; Lee 2000; Fecko 2011).

The surface metric coefficients of the covariant and contravariant components
have the similar characteristics such as the metric coefficients:

_ _ SJ
a;jfaj,-fa,'-aj#bi

C o~ (E.38a)
0w k= 1,2,...,N;
Oul Ou/
al =a;,-al =5 (E.38b)

Instead of the metric coefficients g; in the curvilinear Euclidean space, the
surface metric coefficients a;; are used in the general curvilinear Riemannian
manifold.

E.2.4 Tangent and Normal Vectors on the Riemannian Surface

We consider a point P(u], uz) on a differentiable Riemannian surface that is
parameterized by u' and u”. Furthermore, the vectors a, and a, are the covariant
bases of the curvilinear coordinates (ul, uz), respectively. In general, a
hypersurface in an N-dimensional manifold with coordinates {ui} fori =1, 2,
..., N can be defined as a differentiable (N — 1)-dimensional subspace with a
codimension of 1.

The basis a; of the coordinate u' can be rewritten as

or
a; = —
ou’ (E.39)
=r; fori=1,2

The covariant basis a; is tangent to the coordinate u’ at the point P. Both bases
a; and a, generate the tangential surface T tangent to the Riemannian surface S at
the point P, which is defined by the curvilinear coordinates of u' and u?, as shown
in Fig. E.10.

The angle of two intersecting Gaussian parameterized curves 1’ and i’ results
from the dot product of the bases at the point P(i', if).

a; - a = |a - ’aj| cos(a;, aj) =

_ a-q
cos 0;; = cos(a;,a) = ————
y ( 1y .1) |ai| . ’a]| (E40)
aij

=W <1 forf;e [o,g}
Vi) \/AG)
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Fig. E.10 Tangent vectors to N
the curvilinear coordinates tangential surface T
', u”) 9
Riemannian surface
Note that

la;| = v/a; - a; = ,/a;;), no summation over (ii)

where a;; and a;; are the vector lengths of a; and a;; a;, the surface metric
coefficients.
The surface metric coefficients can be defined by
aj = a; - aj 7é 51]

« (E.41)
:a_x'f.ai fork=1,2...,N
Ou! Oul

E.2.5 Angle Between Two Curvilinear Coordinates

We now give a concrete example of the computation of the angle between two
curvilinear coordinates. Given two arbitrary basis vectors at the point P(ul, uz), we
can write them with the covariant basis {e;}:

a=1-e +0- ey
a=0-e+1-e.

The covariant metric coefficients a;; can be calculated:

N (a1 ar\ _ 1 0
(alj) - <a21 (122) - (0 1)

The angle between two base vectors results from Eq. (E.40):
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cos 0; = S B—
V(i) T /D)
ain 0
= cos 0, = = =0
P an - van Vi1

Thus,

1 ap ~1 T
012 = cos <m \/@> cos™ (0) 3
In this case, the curvilinear coordinates of u' and u? are orthogonal at the point
P on the Riemannian surface S, as shown in Fig. E.10.
The tangent vectors a; and a, generate the tangential surface T tangent to the
Riemannian surface § at the point P. The normal vector Np to the tangential
surface T at the point P is given by

N or Or
p=—X71—==TI; XTI
Ou'  Ou/ ! J

=a; xa; fori,j=1,2 (E42)
= gaf

where

o is the scalar factor;

k . . . . .
a is the contravariant basis of the curvilinear coordinate of u*.

Multiplying Eq. (E.42) by the covariant basis a;, the scalar factor o results in

oc(ak- ak)=oc5£=oc=(a,~><aj)- ay

(E.43)
= o= (a; x aj) cag = [aiaajaak]

The scalar factor o equals the scalar triple product that is given in Nayak
(2012):

o= aj,a,a3] =(a; xa;) a,=(axa;) a = (axa)-a
1

2

ol

1
2

ajr ap apg az  azp as az axp ax
=|ax ax axp| = |aj@ ap ap3|= |4y ax as (E.44)
az  azp  as az axp axn apy  apz a3

=/det(a;) =J

where Jacobian J is the determinant of the covariant basis tensor.
The unit normal vector np in Eq. (E.42) becomes using the Lagrange identity.
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Fig. E11 Surface area in the
curvilinear coordinates

ul+du?

u'+au’

np a; X a; B a; X a;

[ar x | Ve - ag — (@)’

(E.45)

Note that
|a,-|2: a; - a; = a(;), no summation over (ii)
The Lagrange identity results from the cross product of two vectors a and b.
|]a x b| = |a| - |b]| sin(a,b) =
la x b|* = |a|*- [b|*sin?(a, b)
= |a|* |b[*- (1 — cos*(a,b))
= (lal - b|)*~(jal.|b| - cos(a, b))*
= (lal - |b])*~(a - b)’
Thus,

lax b| = \/|a|2- Ib*—(a - b)? (E.46)
Equation (E.46) is called the Lagrange identity.

E.2.6 Surface Area in Curvilinear Coordinates

The surface area S in the differentiable Riemannian curvilinear surface, as

displayed in Fig. E.11, can be calculated using the Lagrange identity (Nayak
2012).
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// Ou' 6uJ
= //|ai x a;| du'du’!

(E47)
R

- // a(i- ag) — (ay)” du'du’

:/ lay x a;|du'du® fori=1;j=2

du 'du’

Therefore,

(E.48)
— / 2414,2
= // ayy - axy — (alz) du' du
In Eq. (E.47), the vector length squared can be calculated as
|a;|’=a, -a; = a;; no summation over (ii)
E.3 Kronecker Delta
The Kronecker delta is very useful in tensor analysis and is defined as
; ou 0 fori#j
g
0 = ou' {1 fori=j (E49)

where ' and i’ are in the same coordinate system and independent of each other.

Some properties of the Kronecker delta (Kronecker tensor) are considered
(Nayak 2012; Oeijord 2005). We summarize a few properties of the Kronecker
delta:

Property 1
Chain rule of differentiation of the Kronecker delta using the contraction rule (cf.
Appendix A)

. ou/  Ouw ouk ;K
o = o= R — o]} (E.50)
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Property 2
Kronecker delta in Einstein summation convention
Sid* = &a" + -+ Sja* + - + Sya™
=04+---+1la*+...20 (E.51)

_ azk

Property 3
Product of Kronecker deltas

8i0] = 010p + -+ + 010} + -+ + Oy

=04+ 1.0 440 (E.52)
=
Note that
58; =] =0 =--- =% = 1(no summation over the free index i);
However,

0 = 81 + 3+ + ) = N (summation over the dummy index 7).

E.4 Levi-Civita Permutation Symbols

Levi-Civita permutation symbols in a three-dimensional space are third-order
pseudo-tensors. They are a useful tool to simplify the mathematical expressions
and computations (Klingbeil 1966; Nayak 2012; Kay 2011).
The Levi-Civita permutation symbols can simply be defined as
+1 if (i,/, k) is an even permutation;
gjx = & —1 if (i,/, k)is an odd permutation;
0 ifi=j, ori—k orj—k (E.53)

S ap=s(i—j)- G—k) - (k—i) forijk=123

Here, we abstain from giving an exact definition of even and odd permutations
because this would go beyond the scope of this book. The reader is referred to the
literature (Lee 2000; Fecko 2011).
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Fig. E.12 27 Levi-Civita
permutation symbols

According to Eq. (E.53), the Levi-Civita permutation symbols can be expressed
as

__ | &j = &u = & (even permutation); E.54
BT\ —ew = —ei = —ai (odd tati (E:54)
ik ki ik permutation)

The 27 Levi-Civita permutation symbols for a three-dimensional coordinate
system are graphically displayed in Fig. E.12.
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Definitions of Mathematical Symbols
in this Book

e First partial derivative of a second-order tensor with respect to u*
j o1
* 7 ouk
Do not confuse Eq. (1) with the symbol used in some books:
. OTV
ij __
e = Ouk

This symbol is equivalent to Eq. (2) used in this book.

+ D T + T, T

e First covariant derivative of a second-order tensor with respect to u*

TV, = Tj{ + 0 T 4T, T™ (2)

e Second partial derivative of a first-order tensor with respect to «' and u*

_ o1
k= Suiouk

Do not confuse Eq. (3) with the symbol used in some books:

T o P
Tt = g~ LieiTm = Vg7 = Vi g
oT;
+ Ty T, = D L+ TR, T,

This symbol is equivalent to Eq. (4) used in this book.

e Second covariant derivative of a first-order tensor with respect to « and u*
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Definitions of Mathematical Symbols in this Book

238
T,' ki = Tijk FlkJT F mj — F:;Tm,k (4)
+ Ui DT — Uy Tin + U1, T,

e Christoffel symbols of first kind
I'jrinstead of [i,, k] used in some books.

e Christoffel symbols of second kind

l"g.instead of { ; kj} used in some books.
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A Covariant basis, 217

Abstract index notation, 95, 190 Covariant derivative, 88

Adjoint, 17 Covariant Einstein tensor, 97

Ambient coordinate, 136, 137 Covariant first-order tensor, 86
Ampere-Maxwell law, 185 Covariant metric tensor components, 68
Angle between two vectors, 223 Covariant partial derivative, 86
Antisymmetric, 21, 62 Covariant Riemann curvature tensor, 90
Arc length, 219, 220, 228 Cross product, 55

Area differential, 103 Curl (rotation), 149

Curl identity, 152
Curvature vector, 106

B Curved surfaces, 227
Basis tensors, 51 Cyclic property, 118
Bianchi first identity, 90 Cylindrical coordinates, 5

Bianchi second identity, 97
Black hole, 193

Block symmetry, 117 D
Bra, 17 Derivative of the contravariant basis, 82
Bra and ket, 15 Derivative of the covariant basis, 74

Derivative of the product, 82
Divergence, 145, 147

C Divergence theorem, 158
Cartan’s formula, 132 Dual bases, 42
Cauchy’s strain tensor, 180, 182 Dual-vector spaces, 36

Cauchy’s stress tensor, 176
Cayley—Hamilton theorem, 180

CFD, 164 E

Characteristic equation, 13, 32, 179 Eigenfrequency, 13

Christoffel symbol, 82 Eigenkets, 30

Codazzi’s equation, 124 Eigenvalue, 11

Computational fluid dynamics, 164 Eigenvector, 13

Congruence, 125 Einstein field equations, 190
Constitutive equations, 173 Einstein tensor, 97

Continuity equation, 164 Einstein—-Maxwell equations, 190, 191
Contravariant basis, 217 Elasticity tensor, 183

Contravariant metric tensor components, 68 Electric charge density, 185
Coordinate velocity, 136, 137 Electric displacement, 184

Coriolis acceleration, 168 Electric field strength, 184, 186, 191
Cosmological constant, 190 Electrodynamics, 184

Covariant and contravariant bases, 42 Electromagnetic stress—energy tensor, 191
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Electromagnetic waves, 186
Elliptic point, 109

Energy or rothalpy equation, 171
Energy—-momentum tensor, 191
Euclidean N-space, 215
Euclidean space, 227

Euler’s characteristic, 119

F

Faraday’s law, 185

First fundamental form, 107
First-kind Christoffel symbol, 77
First-kind Ricci tensor, 95, 96
Flat space, 91

Flat surface, 227

Four-current density vector, 187
Four-dimensional manifold, 187
Four-dimensional space time, 187
Frenet orthonormal frame, 118
Friction stress contravariant tensor, 170

G

Gauss derivative equations, 120, 121
Gauss divergence theorem, 158
Gauss equation, 124

Gauss theorem, 158

Gauss’s law for electric fields, 184
Gauss’s law for magnetic fields, 185
Gauss’s Theorema Egregium, 113
Gauss—Bonnet theorem, 118
Gauss—Codazzi equations, 123
Gaussian curvature, 111, 115
Gaussian surface parameters, 228
Geodesic curvature, 106

Gradient, 144

Gradient of a contravariant vector, 145
Gradient of a covariant vector, 145
Gradient of an invariant, 144
Gram-Schmidt scheme, 222, 223
Gravitational constant, 190, 192
Green’s identities, 160

H

Hermitian, 29

Hermitian transformation, 29
Hermitian transformation matrix, 31
Hessian tensor, 112, 114

Hooke’s law, 183

Hyperbolic point, 109

Index

I

Identity matrix, 23

Inner product of two kets, 21
Interior product, 132
Intrinsic geometry, 229
Intrinsic value, 55

Invariant time derivative, 137

J
Jacobi identity, 128
Jacobian, 4, 41

K

Ket orthonormal bases, 19

Ket transformation, 25

Ket vector, 17

Killing vector, 136

Kinetic energy—momentum tensor, 191
Kronecker delta, 221, 233

L

Lagrange identity, 232

Laplacian of a contravariant vector, 151
Laplacian of an invariant, 151
Levi-Civita permutation, 234
Levi-Civita permutation symbol, 55
Lie derivative, 130

Lie dragged, 128, 129

Light speed, 186

Linear adjoint operator, 21

Lorentz transformation, 186

M

Magnetic field density, 184
Magnetic field strength, 184
Maxwell’s equations, 184

Mean curvature, 111

Metric tensor, 221

Minkowski space, 187

Mixed components, 55

Mixed metric tensor components, 68
Momentum equations, 166

Moving surface, 136

Multifold N-dimensional tensor space, 63
Multilinear functional, 1, 36
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N

Nabla operator, 143
Navier—Stokes equations, 164
Newton’s constant, 192
N-order tensor, 35

Normal curvature, 106
Normal vector, 231

(0]

One form, 131

Orthonormal coordinate, 218
Orthonormalization, 218
Outer product, 22

P
Parabolic point, 109
Parameterized curves, 101

Partial derivatives of the Christoffel symbols,

90
Photon sphere, 195
Physical tensor component, 72
Physical vector components, 163
Poincaré group, 187
Poincaré transformation, 186
Polar materials, 176
Positive definite, 21
Principal curvature planes, 111
Principal normal curvatures, 111
Principal strains, 182
Principal stresses, 178
Projection operator, 23
Propagating speed, 186

R

Ricci curvature, 96

Ricci tensor, 95, 190

Ricci’s lemma, 93

Riemann curvature, 115, 116

Riemann curvature tensor, 90
Riemann—Christoffel tensor, 89, 90, 94, 95
Riemannian manifold, 222

S

Schwarzschild’s solution, 192
Second covariant derivative, 115
Second fundamental form, 108
Second partial derivative, 89
Second-kind Christoffel symbol, 75, 121
Second-kind Ricci tensor, 95
Second-order tensor, 50

Shear modulus, 183

Shift tensor, 39

Skew symmetric, 21
Space—time dimensions, 184
Space-time equations, 184
Spherical coordinates, 8
Stokes theorem, 159

Stress and strain tensors, 172
Substantial derivative, 167
Surface area, 232

Surface coordinates, 136
Surface curvature tensor, 123
Surface triangulation, 119

T

Tangential coordinate velocity, 136, 137
Tangential surface, 230

Tensor, 35

Tensor product, 50

Transformed ket basis, 26

Transpose conjugate, 17

U
Unit normal vector, 105
Unit tangent vector, 105

\'
Volume differential, 162

w
Weingarten’s equations, 121

241



	Preface
	Contents
	About the Authors
	1 General Basis and Bra--Ket Notation
	1.1…Introduction to General Basis and Tensor Types
	1.2…General Basis in Curvilinear Coordinates
	1.2.1 Orthogonal Cylindrical Coordinates
	1.2.2 Orthogonal Spherical Coordinates

	1.3…Eigenvalue Problem of a Linear Coupled Oscillator
	1.4…Notation of Bra and Ket
	1.5…Properties of Kets
	1.6…Analysis of Bra and Ket
	1.6.1 Bra and Ket Bases
	1.6.2 Gram--Schmidt Scheme of Basis Orthonormalization
	1.6.3 Cauchy--Schwarz and Triangle Inequalities
	1.6.4 Computing Ket and Bra Components
	1.6.5 Inner Product of Two Kets
	1.6.6 Outer Product of Bra and Ket
	1.6.7 Ket and Bra Projection Components on the Bases
	1.6.8 Linear Transformation of Kets
	1.6.9 Coordinate Transformations
	1.6.10 Hermitian Transformation

	1.7…Applying Bra and Ket Analysis to Eigenvalue Problems
	References

	2 Tensor Analysis
	2.1…Introduction to Tensors
	2.2…Definition of Tensors
	2.3…Tensor Algebra
	2.3.1 General Bases in General Curvilinear Coordinates
	2.3.2 Metric Coefficients in General Curvilinear Coordinates
	2.3.3 Tensors of Second Order and Higher Orders
	2.3.4 Tensor and Cross Products of Two Vectors in General Bases
	2.3.5 Rules of Tensor Calculations

	2.4…Coordinate Transformations
	2.4.1 Transformation in the Orthonormal Coordinates
	2.4.2 Transformation of Curvilinear Coordinates in EN
	2.4.3 Examples of Coordinate Transformations
	2.4.4 Transformation of Curvilinear Coordinates in RN

	2.5…Tensor Calculus in General Curvilinear Coordinates
	2.5.1 Physical Component of Tensors
	2.5.2 Derivatives of Covariant Bases
	2.5.3 Christoffel Symbols of First and Second Kind
	2.5.4 Prove that the Christoffel Symbols are Symmetric
	2.5.5 Examples of Computing the Christoffel Symbols
	2.5.6 Coordinate Transformations of the Christoffel Symbols
	2.5.7 Derivatives of Contravariant Bases
	2.5.8 Derivatives of Covariant Metric Coefficients
	2.5.9 Covariant Derivatives of Tensors
	2.5.10 Riemann--Christoffel Tensor
	2.5.11 Ricci’s Lemma
	2.5.12 Derivative of the Jacobian
	2.5.13 Ricci Tensor
	2.5.14 Einstein Tensor

	References

	3 Elementary Differential Geometry
	3.1…Introduction
	3.2…Arc Length and Surface in Curvilinear Coordinates
	3.3…Unit Tangent and Normal Vector to Surface
	3.4…The First Fundamental Form
	3.5…The Second Fundamental Form
	3.6…Gaussian and Mean Curvatures
	3.7…Riemann Curvature
	3.8…Gauss--Bonnet Theorem
	3.9…Gauss Derivative Equations
	3.10…Weingarten’s Equations
	3.11…Gauss--Codazzi Equations
	3.12…Lie Derivatives
	3.12.1 Vector Fields in Riemannian Manifold
	3.12.2 Lie Bracket
	3.12.3 Lie Dragging
	3.12.3.1 Lie Dragging of a Function
	3.12.3.2 Lie Dragging of a Vector Field

	3.12.4 Lie Derivatives
	3.12.4.1 Lie Derivative of a Function Product
	3.12.4.2 Lie Derivative of a Tensor Product
	3.12.4.3 Lie Derivative of a One-Form Field Differential
	3.12.4.4 Lie Derivative of a One-Form Field and Vector Product
	3.12.4.5 Lie Derivative of a One-Form Field

	3.12.5 Torsion and Curvature in a Distorted and Curved Manifold
	3.12.6 Killing Vector Fields

	3.13…Invariant Time Derivatives on Moving Surfaces
	3.13.1 Invariant Time Derivative of an Invariant Field
	3.13.2 Invariant Time Derivative of Tensors

	References

	4 Applications of Tensors and Differential Geometry
	4.1…Nabla Operator in Curvilinear Coordinates
	4.2…Gradient, Divergence, and Curl
	4.2.1 Gradient of an Invariant
	4.2.2 Gradient of a Vector
	4.2.3 Divergence of a Vector
	4.2.4 Divergence of a Second-Order Tensor
	4.2.5 Curl of a Covariant Vector

	4.3…Laplacian Operator
	4.3.1 Laplacian of an Invariant
	4.3.2 Laplacian of a Contravariant Vector

	4.4…Applying Nabla Operators in Spherical Coordinates
	4.4.1 Gradient of an Invariant
	4.4.2 Divergence of a Vector
	4.4.3 Curl of a Vector

	4.5…The Divergence Theorem
	4.5.1 Gauss and Stokes Theorems
	4.5.2 Green’s Identities
	4.5.3 First Green’s Identity
	4.5.4 Second Green’s Identity
	4.5.5 Differentials of Area and Volume
	4.5.6 Calculating the Differential of Area
	4.5.7 Calculating the Differential of Volume

	4.6…Governing Equations of Computational Fluid Dynamics
	4.6.1 Continuity Equation
	4.6.2 Momentum Equations
	4.6.3 Energy (Rothalpy) Equation

	4.7…Basic Equations of Continuum Mechanics
	4.7.1 Cauchy’s Law of Motion
	4.7.2 Principal Stresses of Cauchy’s Stress Tensor
	4.7.3 Cauchy’s Strain Tensor
	4.7.4 Constitutive Equations of Elasticity Laws

	4.8…Maxwell’s Equations of Electrodynamics
	4.9…Einstein Field Equations
	4.10…Schwarzschild’s Solution of the Einstein Field Equations
	4.11…Schwarzschild Black Hole
	References

	Appendix ARelations Between Covariantand Contravariant Bases
	Appendix BPhysical Components of Tensors
	Appendix CNabla Operators
	Appendix DEssential Tensors
	Appendix EEuclidean and Riemannian Manifolds
	Definitions of Mathematical Symbolsin this Book
	Index



